我使用4D numpy数组,其中沿数组的第3维计算统计量mean, meadin, std
,如下所示:
import numpy as np
input_shape = (1, 10, 4)
n_sample =20
X = np.random.uniform(0,1, (n_sample,)+input_shape)
X.shape
(20, 1, 10, 4)
然后我以这种方式计算mean, med,
和std-dev
:
sta_fuc = (np.mean, np.median, np.std)
stat = np.concatenate([func(X, axis=2, keepdims=True) for func in sta_fuc], axis=2)
因此:
stat.shape
(20, 1, 3, 4)
代表沿该维度的mean, median
和std
的值。
但是随后我想添加列的平均绝对偏差mad
的值,以便统计量为(mean, median, std, mad
),但是看来numpy
没有提供功能为了那个原因。如何将mad
添加到我的统计信息中?
编辑
第一个答案,使用已定义的函数,即:
def mad(arr, axis=None, keepdims=True):
median = np.median(arr, axis=axis, keepdims=True)
mad = np.median(np.abs(arr-median, axis=axis, keepdims=keepdims),
axis=axis, keepdims=keepdims)
return mad
然后将mad
添加到统计信息中,这会产生错误,如下所示:
sta_fuc = (np.mean, np.median, np.std, mad)
stat = np.concatenate([func(X, axis=2, keepdims=True) for func in sta_fuc], axis=2)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-22-dab51665f952> in <module>()
1 sta_fuc = (np.mean, np.median, np.std, mad)
----> 2 stat = np.concatenate([func(X, axis=2, keepdims=True) for func in sta_fuc], axis=2)
1 frames
<ipython-input-21-84d735c8c516> in mad(arr, axis, keepdims)
1 def mad(arr, axis=None, keepdims=True):
2 median = np.median(arr, axis=axis, keepdims=True)
----> 3 mad = np.median(np.abs(arr-median, axis=axis, keepdims=keepdims),
4 axis=axis, keepdims=keepdims)
5 return mad
TypeError: 'axis' is an invalid keyword to ufunc 'absolute'
EDIT-2
使用@Jussi建议的scipy
函数也会产生如下错误:
从scipy.stats中将mad_absolute_deviation导入为疯狂
sta_fuc = (np.mean, np.median, np.std, mad)
stat = np.concatenate([func(X, axis=2, keepdims=True) for func in sta_fuc], axis=2)
TypeError: median_absolute_deviation() got an unexpected keyword argument 'keepdims'
答案 0 :(得分:1)
通常,我看到MAD指的是中值绝对偏差。如果您要这样做,可以在SciPy库中以scipy.stats.median_absolute_deviation()
的形式获得。
自己编写合适的函数也很容易。
编辑:这是一个带有keepdims
参数的MAD函数:
def mad(data, axis=None, scale=1.4826, keepdims=False):
"""Median absolute deviation (MAD).
Defined as the median absolute deviation from the median of the data. A
robust alternative to stddev. Results should be identical to
scipy.stats.median_absolute_deviation(), which does not take a keepdims
argument.
Parameters
----------
data : array_like
The data.
scale : float, optional
Scaling of the result. By default, it is scaled to give a consistent
estimate of the standard deviation of values from a normal
distribution.
axis : numpy axis spec, optional
Axis or axes along which to compute MAD.
keepdims : bool, optional
If this is set to True, the axes which are reduced are left in the
result as dimensions with size one.
Returns
-------
ndarray
The MAD.
"""
# keep dims here so that broadcasting works
med = np.median(data, axis=axis, keepdims=True)
abs_devs = np.abs(data - med)
return scale * np.median(abs_devs, axis=axis, keepdims=keepdims)
答案 1 :(得分:1)
我不知道使用numpy的内置解决方案。但是,您可以使用mad = median(abs(a - median(a)))
轻松地基于numpy函数实现它。
def mad(arr, axis=None, keepdims=True):
median = np.median(arr, axis=axis, keepdims=True)
mad = np.median(np.abs(arr-median),axis=axis, keepdims=keepdims)
return mad