我有一个数据帧字典dict
,例如:
{
‘table_1’: name color type
Banana Yellow Fruit,
‘another_table_1’: city state country
Atlanta Georgia United States,
‘and_another_table_1’: firstname middlename lastname
John Patrick Snow,
‘table_2’: name color type
Red Apple Fruit,
‘another_table_2’: city state country
Arlington Virginia United States,
‘and_another_table_2’: firstname middlename lastname
Alex Justin Brown,
‘table_3’: name color type
Lettuce Green Vegetable,
‘another_table_3’: city state country
Dallas Texas United States,
‘and_another_table_3’: firstname middlename lastname
Michael Alex Smith }
我想根据它们的名称将这些数据框合并在一起,以便最后我只有3个数据框:
table
name color type
Banana Yellow Fruit
Red Apple Fruit
Lettuce Green Vegetable
another_table
city state country
Atlanta Georgia United States
Arlington Virginia United States
Dallas Texas United States
and_another_table
firstname middlename lastname
John Patrick Snow
Alex Justin Brown
Michael Alex Smith
根据我的初步研究,似乎应该可以使用Python:
.split
,字典理解和itertools.groupby
根据关键字名称将字典中的数据帧分组在一起pandas.concat
函数遍历这些词典并将数据帧分组在一起我对Python没有太多的经验,我对如何实际编写此代码有些迷惑。
我已审查 How to group similar items in a list?和 Merge dataframes in a dictionary个帖子,但它们没有帮助,因为在我看来,数据框的名称长度有所不同。
我也不希望对任何数据框名称进行硬编码,因为其中有1000多个。
答案 0 :(得分:1)
这是一种方法:
给出此数据帧字典:
dd = {'table_1': pd.DataFrame({'Name':['Banana'], 'color':['Yellow'], 'type':'Fruit'}),
'table_2': pd.DataFrame({'Name':['Apple'], 'color':['Red'], 'type':'Fruit'}),
'another_table_1':pd.DataFrame({'city':['Atlanta'],'state':['Georgia'], 'Country':['United States']}),
'another_table_2':pd.DataFrame({'city':['Arlinton'],'state':['Virginia'], 'Country':['United States']}),
'and_another_table_1':pd.DataFrame({'firstname':['John'], 'middlename':['Patrick'], 'lastnme':['Snow']}),
'and_another_table_2':pd.DataFrame({'firstname':['Alex'], 'middlename':['Justin'], 'lastnme':['Brown']}),
}
tables = set([i.rsplit('_', 1)[0] for i in dd.keys()])
dict_of_dfs = {i:pd.concat([dd[x] for x in dd.keys() if x.startswith(i)]) for i in tables}
输出一个新的组合表字典:
dict_of_dfs['table']
# Name color type
# 0 Banana Yellow Fruit
# 0 Apple Red Fruit
dict_of_dfs['another_table']
# city state Country
# 0 Atlanta Georgia United States
# 0 Arlinton Virginia United States
dict_of_dfs['and_another_table']
# firstname middlename lastnme
# 0 John Patrick Snow
# 0 Alex Justin Brown
使用集合中的defaultdict的另一种方法,创建一个组合数据帧的列表:
from collections import defaultdict
import pandas as pd
dd = {'table_1': pd.DataFrame({'Name':['Banana'], 'color':['Yellow'], 'type':'Fruit'}),
'table_2': pd.DataFrame({'Name':['Apple'], 'color':['Red'], 'type':'Fruit'}),
'another_table_1':pd.DataFrame({'city':['Atlanta'],'state':['Georgia'], 'Country':['United States']}),
'another_table_2':pd.DataFrame({'city':['Arlinton'],'state':['Virginia'], 'Country':['United States']}),
'and_another_table_1':pd.DataFrame({'firstname':['John'], 'middlename':['Patrick'], 'lastnme':['Snow']}),
'and_another_table_2':pd.DataFrame({'firstname':['Alex'], 'middlename':['Justin'], 'lastnme':['Brown']}),
}
tables = set([i.rsplit('_', 1)[0] for i in dd.keys()])
d = defaultdict(list)
[d[i].append(dd[k]) for i in tables for k in dd.keys() if k.startswith(i)]
l_of_dfs = [pd.concat(d[i]) for i in d.keys()]
print(l_of_dfs[0])
print('\n')
print(l_of_dfs[1])
print('\n')
print(l_of_dfs[2])
输出:
city state Country
0 Atlanta Georgia United States
0 Arlinton Virginia United States
firstname middlename lastnme
0 John Patrick Snow
0 Alex Justin Brown
Name color type
0 Banana Yellow Fruit
0 Apple Red Fruit