我正在建立OLS模型,但无法做出任何预测。
您能解释我在做什么吗?
建立模型:
import numpy as np
import pandas as pd
from scipy import stats
import statsmodels.api as sm
import matplotlib.pyplot as plt
d = {'City': ['Tokyo','Tokyo','Lisbon','Tokyo','Madrid','New York','Madrid','London','Tokyo','London','Tokyo'],
'Card': ['Visa','Visa','Visa','Master Card','Bitcoin','Master Card','Bitcoin','Visa','Master Card','Visa','Bitcoin'],
'Colateral':['Yes','Yes','No','No','Yes','No','No','Yes','Yes','No','Yes'],
'Client Number':[1,2,3,4,5,6,7,8,9,10,11],
'Total':[100,100,200,300,10,20,40,50,60,100,500]}
d = pd.DataFrame(data=d).set_index('Client Number')
df = pd.get_dummies(d,prefix='', prefix_sep='')
X = df[['Lisbon','London','Madrid','New York','Tokyo','Bitcoin','Master Card','Visa','No','Yes']]
Y = df['Total']
X1 = sm.add_constant(X)
reg = sm.OLS(Y, X1).fit()
reg.summary()
预测:
d1 = {'City': ['Tokyo','Tokyo','Lisbon'],
'Card': ['Visa','Visa','Visa'],
'Colateral':['Yes','Yes','No'],
'Client Number':[11,12,13],
'Total':[0,0,0]}
df1 = pd.DataFrame(data=d1).set_index('Client Number')
df1 = pd.get_dummies(df1,prefix='', prefix_sep='')
y_new = df1[['Lisbon','Tokyo','Visa','No','Yes']]
x_new = df1['Total']
mod = sm.OLS(y_new, x_new)
mod.predict(reg.params)
然后它显示:ValueError:形状(3,1)和(11,)没有对齐:1(dim 1)!= 11(dim 0)
我在做什么错了?
答案 0 :(得分:1)
以下是我的评论中固定的代码预测部分:
d1 = {'City': ['Tokyo','Tokyo','Lisbon'],
'Card': ['Visa','Visa','Visa'],
'Colateral':['Yes','Yes','No'],
'Client Number':[11,12,13],
'Total':[0,0,0]}
df1 = pd.DataFrame(data=d1).set_index('Client Number')
df1 = pd.get_dummies(df1,prefix='', prefix_sep='')
x_new = df1.drop(columns='Total')
主要问题是训练X1
和x_new
数据集中的假人数量不同。
在下面,我添加缺少的虚拟列,并用零填充:
x_new = x_new.reindex(columns = X1.columns, fill_value=0)
现在x_new
的列数等于训练数据集X1
:
const Lisbon London Madrid ... Master Card Visa No Yes
Client Number ...
11 0 0 0 0 ... 0 1 0 1
12 0 0 0 0 ... 0 1 0 1
13 0 1 0 0 ... 0 1 1 0
[3 rows x 11 columns]
最后使用先前训练的模型x_new
对新数据集reg
进行预测:
reg.predict(x_new)
结果:
Client Number
11 35.956284
12 35.956284
13 135.956284
dtype: float64
APPENDIX
根据要求,我在下面附上完全可复制的代码以测试训练和预测任务:
import numpy as np
import pandas as pd
from scipy import stats
import statsmodels.api as sm
import matplotlib.pyplot as plt
d = {'City': ['Tokyo','Tokyo','Lisbon','Tokyo','Madrid','New York','Madrid','London','Tokyo','London','Tokyo'],
'Card': ['Visa','Visa','Visa','Master Card','Bitcoin','Master Card','Bitcoin','Visa','Master Card','Visa','Bitcoin'],
'Colateral':['Yes','Yes','No','No','Yes','No','No','Yes','Yes','No','Yes'],
'Client Number':[1,2,3,4,5,6,7,8,9,10,11],
'Total':[100,100,200,300,10,20,40,50,60,100,500]}
d = pd.DataFrame(data=d).set_index('Client Number')
df = pd.get_dummies(d,prefix='', prefix_sep='')
X = df[['Lisbon','London','Madrid','New York','Tokyo','Bitcoin','Master Card','Visa','No','Yes']]
Y = df['Total']
X1 = sm.add_constant(X)
reg = sm.OLS(Y, X1).fit()
reg.summary()
###
d1 = {'City': ['Tokyo','Tokyo','Lisbon'],
'Card': ['Visa','Visa','Visa'],
'Colateral':['Yes','Yes','No'],
'Client Number':[11,12,13],
'Total':[0,0,0]}
df1 = pd.DataFrame(data=d1).set_index('Client Number')
df1 = pd.get_dummies(df1,prefix='', prefix_sep='')
x_new = df1.drop(columns='Total')
x_new = x_new.reindex(columns = X1.columns, fill_value=0)
reg.predict(x_new)
答案 1 :(得分:0)
最大的问题是您没有使用相同的虚拟转换。也就是说,缺少df1中的某些值。您可以使用以下代码(来自here)添加缺少的值/列:
data1
此外,您将node1
和d1 = {'City': ['Tokyo','Tokyo','Lisbon'],
'Card': ['Visa','Visa','Visa'],
'Colateral':['Yes','Yes','No'],
'Client Number':[11,12,13],
'Total':[0,0,0]}
df1 = pd.DataFrame(data=d1).set_index('Client Number')
df1 = pd.get_dummies(df1,prefix='', prefix_sep='')
print(df1.shape) # Shape is 3x6 but it has to be 3x11
# Get missing columns in the training test
missing_cols = set( df.columns ) - set( df1.columns )
# Add a missing column in test set with default value equal to 0
for c in missing_cols:
df1[c] = 0
# Ensure the order of column in the test set is in the same order than in train set
df1 = df1[df.columns]
print(df1.shape) # Shape is 3x11
混合在一起。所以应该是:
x_new
请注意,我使用y_new
代替了x_new = df1.drop(['Total'], axis=1).values
y_new = df1['Total'].values
mod = sm.OLS(y_new, x_new)
mod.predict(reg.params)
,因为它更方便(就1而言)更不容易(键入)错误,而2则更少了代码。
答案 2 :(得分:0)
首先,您需要对所有单词进行字符串索引或对值进行一次热编码。 ML模型不接受单词,仅接受数字。接下来,您希望X和y为:
X = d.iloc[:,:-1]
y = d.iloc[:,-1]
这样,X的形状为[11,3],而y的形状为[11,],这是需要的适当形状。