我正在尝试使用Keras进行二进制逻辑回归。但是我收到了typeError
TypeError: The added layer must be an instance of class Layer. Found: {<tensorflow.python.keras.layers.core.Dense object at 0x7f2887e399e8>}
这是我的标题:
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense
import keras.utils
#from tensorflow.keras import layers
from keras.optimizers import SGD
from keras import initializers
这是我的代码:
model=keras.Sequential({
keras.layers.Dense(1,input_shape=(4,),activation='sigmoid',kernel_initializer='zeros',bias_initializer='zeros')
})
opt=SGD(learning_rate=0.05)
model.compile(optimizer=opt,loss='binary_crossentropy',metrics=['binary_accuracy'])
它显示的错误是:
TypeError Traceback (most recent call last)
<ipython-input-4-50823f563eb6> in <module>()
1 model=keras.Sequential({
----> 2 keras.layers.Dense(1,input_shape=(4,),activation='sigmoid',kernel_initializer='zeros',bias_initializer='zeros')
3 })
4 opt=SGD(learning_rate=0.05)
5 model.compile(optimizer=opt,loss='binary_crossentropy',metrics=['binary_accuracy'])
3 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/sequential.py in add(self, layer)
180 raise TypeError('The added layer must be '
181 'an instance of class Layer. '
--> 182 'Found: ' + str(layer))
183
184 tf_utils.assert_no_legacy_layers([layer])
TypeError: The added layer must be an instance of class Layer. Found: {<tensorflow.python.keras.layers.core.Dense object at 0x7f2887e399e8>}
我发现奇怪的一件事是我能够更早地运行相同的代码,但现在却无法运行它,是否有我不熟悉的更新或代码错误?
答案 0 :(得分:0)
尝试一下:
model=Sequential([
Dense(1,input_shape=(4,),activation='sigmoid',kernel_initializer='zeros',bias_initializer='zeros')
])
opt=SGD(learning_rate=0.05)
model.compile(optimizer=opt,loss='binary_crossentropy',metrics=['binary_accuracy'])
model.summary()
Model: "sequential_3"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_3 (Dense) (None, 1) 5
=================================================================
Total params: 5
Trainable params: 5
Non-trainable params: 0