我正在构建Bi-LSTM网络,并且其中包括了关注层。但这增加了一个错误,那就是添加的图层必须是类图层的实例。
我导入的一些库是
from keras.models import Model, Sequential
from keras.layers import LSTM, Activation, Dense, Dropout, Input, Embedding, Bidirectional, Conv1D, Flatten, GlobalMaxPooling1D, SpatialDropout1D
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras import backend as K
from tensorflow.keras.layers import *
关注层类是
class attention(Layer):
def __init__(self, return_sequences=True):
self.return_sequences = return_sequences
super(attention,self).__init__()
def build(self, input_shape):
self.W=self.add_weight(name="att_weight", shape=(input_shape[-1],1),
initializer="normal")
self.b=self.add_weight(name="att_bias", shape=(input_shape[1],1),
initializer="zeros")
super(attention,self).build(input_shape)
def call(self, x):
e = K.tanh(K.dot(x,self.W)+self.b)
a = K.softmax(e, axis=1)
output = x*a
if self.return_sequences:
return output
return K.sum(output, axis=1)
模型看起来像这样
model = Sequential()
model.add(Embedding(max_words, 1152, input_length=max_len, weights=[embeddings]))
model.add(BatchNormalization())
model.add(Activation('tanh'))
model.add(Dropout(0.5))
model.add(Bidirectional(LSTM(32, return_sequences=True)))
model.add(attention(return_sequences=True))
model.add(BatchNormalization())
model.add(Activation('tanh'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.summary()
但是它给出了错误
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-41-ba5b52fe2c87> in <module>()
1 model = Sequential()
----> 2 model.add(Embedding(max_words, 1152, input_length=max_len, weights=[embeddings]))
3 model.add(BatchNormalization())
4 model.add(Activation('tanh'))
5 #model.add(SpatialDropout1D(0.5))
/usr/local/lib/python3.6/dist-packages/keras/engine/sequential.py in add(self, layer)
131 raise TypeError('The added layer must be '
132 'an instance of class Layer. '
--> 133 'Found: ' + str(layer))
134 self.built = False
135 if not self._layers:
TypeError: The added layer must be an instance of class Layer. Found: <tensorflow.python.keras.layers.embeddings.Embedding object at 0x7f0da41aec50>
答案 0 :(得分:1)
This documentation page指出,定义自定义Layer
时,应使用以下语法:
class Linear(tf.keras.layers.Layer):
def __init__(self, units=32, input_dim=32):
super(Linear, self).__init__()
w_init = tf.random_normal_initializer()
self.w = tf.Variable(
initial_value=w_init(shape=(input_dim, units), dtype="float32"),
trainable=True,
)
b_init = tf.zeros_initializer()
self.b = tf.Variable(
initial_value=b_init(shape=(units,), dtype="float32"), trainable=True
)
def call(self, inputs):
return tf.matmul(inputs, self.w) + self.b
因此,您的Layer
导入在技术上是正确的。但是,您使用纯keras
层初始化模型,这会导致错误。随处使用tf.keras
功能,错误会消失,例如:
https://www.tensorflow.org/guide/keras/sequential_model
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
# Your own layer here
class AttentionCustom(layers.Layer):
pass
model = keras.Sequential(
[
layers.Dense(2, activation="relu", name="layer1"),
layers.Dense(3, activation="relu", name="layer2"),
Attention(),
layers.Dense(4, name="layer3"),
]
)