如何将df1转换为df2?
df1 = pd.DataFrame(
{
'item1_aspect1' : ["a", "b", "c"],
'item1_aspect2' : [1,2,3],
'item1_aspect3' : ["[12,34]", "[56,78]", "[99,10]"],
'item2_aspect1' : ["a", "b", "c"],
'item2_aspect2' : [1,2,3],
'item2_aspect3' : ["[12,34]", "[56,78]", "[99,10]"],
'item3_aspect1' : ["a", "b", "c"],
'item3_aspect2' : [1,2,3],
'item3_aspect3' : ["[12,34]", "[56,78]", "[99,10]"]
})
df2 = pd.DataFrame({
'aspect_1' : ["a", "b", "c", "a", "b", "c", "a", "b", "c"],
'aspect_2' : [1,2,3,1,2,3,1,2,3],
'aspect_3' : ["[12,34]", "[56,78]", "[99,10]", "[12,34]", "[56,78]", "[99,10]", "[12,34]", "[56,78]", "[99,10]"]
})
,即列名是一个标识符,分为多个行。我不知道该怎么做。
答案 0 :(得分:1)
我们需要先调整列类型,然后再调整wide_to_long
df1.columns=df1.columns.str.split('_').map(lambda x : '_'.join(x[::-1]))
yourdf=pd.wide_to_long(df1.reset_index(),
['aspect1','aspect2','aspect3'],
i ='index',
j = 'drop',
sep = '_',suffix='\w+').reset_index(drop=True)
Out[137]:
aspect1 aspect2 aspect3
0 a 1 [12,34]
1 b 2 [56,78]
2 c 3 [99,10]
3 a 1 [12,34]
4 b 2 [56,78]
5 c 3 [99,10]
6 a 1 [12,34]
7 b 2 [56,78]
8 c 3 [99,10]
答案 1 :(得分:1)
如果您要坚持使用熊猫操作,就不要一直更改数据类型,而更喜欢列表推导。 试试这个方法-
lst = list(df1.columns)
n=3
new_cols = ['aspect_1', 'aspect_2', 'aspect_3']
#break the column list into groups of n = 3 in this case
chunks = [lst[i:i + n] for i in range(0, len(lst), n)]
#concatenate the list of dataframes over axis = 0after renaming columns of each
pd.concat([df1[i].set_axis(new_cols, axis=1) for i in chunks], axis=0, ignore_index=True)
aspect_1 aspect_2 aspect_3
0 a 1 [12,34]
1 b 2 [56,78]
2 c 3 [99,10]
3 a 1 [12,34]
4 b 2 [56,78]
5 c 3 [99,10]
6 a 1 [12,34]
7 b 2 [56,78]
8 c 3 [99,10]
答案 2 :(得分:0)
获取唯一的尾列名称:
cols = df1.columns.str.split("_").str[-1].drop_duplicates()
在数据框上使用numpy的reshape,然后创建一个新的数据框:
pd.DataFrame(np.reshape(df1.to_numpy(), df1.shape[::-1]), columns=cols)
aspect1 aspect2 aspect3
0 a 1 [12,34]
1 a 1 [12,34]
2 a 1 [12,34]
3 b 2 [56,78]
4 b 2 [56,78]
5 b 2 [56,78]
6 c 3 [99,10]
7 c 3 [99,10]
8 c 3 [99,10]
或者,我们可以结合使用numpy split和numpy vstack来获得输出:
column_count = df1.columns.str[-1].astype(int).max()
pd.DataFrame(np.vstack(np.split(df1.to_numpy(), column_count, axis=1)), columns=cols)
aspect1 aspect2 aspect3
0 a 1 [12,34]
1 b 2 [56,78]
2 c 3 [99,10]
3 a 1 [12,34]
4 b 2 [56,78]
5 c 3 [99,10]
6 a 1 [12,34]
7 b 2 [56,78]
8 c 3 [99,10]
答案 3 :(得分:0)
这是一种相当简单的方法:
df1.columns = [c[6:] for c in df1.columns]
pd.concat([df1.iloc[:, 0:3], df1.iloc[:, 3:6], df1.iloc[:, 6:9]], axis=0)
输出为:
aspect1 aspect2 aspect3
0 a 1 [12,34]
1 b 2 [56,78]
2 c 3 [99,10]
0 a 1 [12,34]
1 b 2 [56,78]
...