我想在下面(在jupyter笔记本中)重现与Geron书第637页示例相对应的学习曲线。
尤其是这是我使用的代码:
%pylab inline
%matplotlib inline
import tensorflow as tf
from tf import keras
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
from collections import deque
import gym
env = gym.make("CartPole-v1")
input_shape = [4]
n_outputs = 2
replay_buffer = deque(maxlen = 1000)
batch_size = 32
discount_factor = 0.95
model = keras.models.sequential([
keras.layers.Dense(32, activation="elu", input_shape = input_shape),
keras.layers.Dense(32, activation="elu"),
keras.layers.Dense(n_outputs)
])
def epsilon_greedy_policy(state, epsilon=0):
if np.random.rand() < epsilon:
return np.random.randint(2)
else:
Q_values = model.predict(state[np.newaxis])
return np.argmax(Q_values[0])
def sample_experiences(batch_size):
indices = np.random.randint(len(replay_buffer), size = batch_size)
batch = [replay_buffer[index] for index in indices]
states, actions, rewards, next_states, dones = [
np.array([experience[field_index] for experience in batch])
for field_index in range(5)]
return states, actions, rewards, next_states, dones
def play_one_step(env, state, epsilon):
action = epsilon_greedy_policy(state, epsilon)
next_state, reward, done, info = env.step(action)
replay_buffer.append((state, actions, reward, next_state, done))
return next_state, reward, done, info
optimizer = keras.optimizer.Adam(lr=1e-3)
loss_fn = keras.losses.mean_squared_error
def training_step(batch_size):
experiences = sample_experiences(batch_size)
states, actions, rewards, next_states, dones = experiences
next_Q_values = model.predict(next_states)
max_next_Q_values = np.max(next_Q_values, axis=1)
target_Q_values = (rewards + (1-dones) * discount_factor 8 max_next_Q_values)
mask = tf.one_hot(actions, n_outputs)
with tf.GradientTape as tape:
all_Q_values = model(states)
Q_values = tf.reduce_mean(all_Q_values * mask, axis = 1, keepdims = True)
loss = tf.reduce_mean(loss_fn(target_Q_values, Q_values))
grads = tape.gradient(loss, model.trainable_variables)
optimizer.appy_gradients(zip(grads, model.trainable_variables))
ep = []
rew = []
for episode in range(600):
obs = env.reset()
for step in range(200):
epsilon = max(1 - episode / 500, 0.01)
obs, reward, done, info = play_one_step(env, obs, epsilon)
ep.append(epsilon)
rew.append(reward)
if done:
break
if episode > 50:
training_step(batch_size)
plt.plot(ep, rew)
plt.show()
除以下几点外,代码与本书中的代码完全相同。
1-我添加了
%pylab inline
%matplotlib inline
2-我在训练循环中添加了ep
和rew
列表,以便以后绘制它们的内容。
但是,当我执行上述操作时,什么都没有发生。有人可以指导我吗?
答案 0 :(得分:0)
您正尝试运行此脚本600x200 = 120,000次迭代。我不知道您正在使用哪台机器,但是除非您拥有强大的硬件-否则它可能要花费很长时间(strongstrong)。我想“什么也没有发生”只是您的计算机仍在运行,试图运行120,000次迭代...
此外,您还将所有这些迭代收集到列表中。您期望一个pythonic列表将包含120,000个值。我不太确定是否有可能。尝试改为使用numpy数组。与matplotlib相同,我不确定是否知道可以绘制120,000个值。
您在上方看到的图表是600集,而不是每个集中所有步骤的所有120,000值。
总结:从小处开始。播放10集,每集执行10个步骤或类似的操作。看看是否可行,然后从那里开始。