home_team_name home_team_goal_count
0 Bayern München 2
1 Bayern München 2
2 Bayern München 1
3 Köln 2
4 Köln 2
我将变量home_team_name上的数据分组。
df.groupby("home_team_name")
home_team_goal_count
的值只能是2或1。我想获得最小的出现次数
每个组中的值。我想要的结果是拜仁慕尼黑1,科隆0。为了说明拜仁慕尼黑的2乘2和1乘1,因此最小值为1。科恩的2乘2和0乘以1,因此最小值为0。
答案 0 :(得分:3)
首先对值SeriesGroupBy.value_counts
进行计数,对所有组合0
进行整形并添加1,2
,最后对min
进行最小值计算:
s = (df.groupby("home_team_name")['home_team_goal_count']
.value_counts()
.unstack(fill_value=0)
.min(axis=1))
print (s)
home_team_name
Bayern München 1
Köln 0
dtype: int64
详细信息:
print (df.groupby("home_team_name")['home_team_goal_count']
.value_counts()
.unstack(fill_value=0))
home_team_goal_count 1 2
home_team_name
Bayern München 1 2
Köln 0 2
在可能的情况下,1
或输入数据中仅2
的值是必要的reindex
:
s = (df.groupby("home_team_name")['home_team_goal_count']
.value_counts()
.unstack(fill_value=0)
.reindex([1, 2], axis=1, fill_value=0)
.min(axis=1))
答案 1 :(得分:3)
让我们尝试使用pd.crosstab
:
pd.crosstab(df['home_team_name'], df['home_team_goal_count'])\
.reindex([1, 2], axis=1, fill_value=0).min(1)
结果:
home_team_name
Bayern München 1
Köln 0
dtype: int64
答案 2 :(得分:1)
import pandas as pd
import numpy as np
list1=['Bayern Munchen','Bayern Munchen','Bayern Munchen','FC Koln','FC Koln']
list2=[2,2,1,2,2]
d={'Home Team Name':list1,'Home Team Goal Count':list2}
data=pd.DataFrame(d)
data['Name']= data['Home Team Name'] +" "+ data['Home Team Goal Count'].astype(str)
data['Name']
Out[39]:
0 Bayern Munchen 2
1 Bayern Munchen 2
2 Bayern Munchen 1
3 FC Koln 2
4 FC Koln 2
name,count=np.unique(data['Name'].tolist(),return_counts=True)
name=[' '.join(x.split(' ')[:-1]) for x in name]
name
Out[99]: ['Bayern Munchen', 'Bayern Munchen', 'FC Koln']
min_val=pd.DataFrame({"Name":name,"Count":count})
name=[]
min_val_count=[]
for x in min_val.Name.unique():
name.append(min_val[min_val.Name!=x].min()[0])
if min_val[min_val.Name!=x].min()[1]==2:
min_val_count.append(0)
else:
min_val_count.append(min_val[min_val.Name!=x].min()[1])
minimum_val_dict=dict(zip(name,min_val_count))
minimum_val_dict
Out[104]: {'FC Koln': 0, 'Bayern Munchen': 1}
与以上答案相比版本稍长。
答案 3 :(得分:0)
执行此操作的另一种方法是使用类别变量,因为存在有限的状态集。所以:
(
df
.astype({"home_team_goal_count": "category"})
.groupby("home_team_name")["home_team_goal_count"]
.apply(lambda x: x.value_counts().min())
)
如果您想知道哪个值最少出现一次,可以调用.idxmin()
而不是.min()
。