我对Python有点陌生,对TensorFlow也很陌生。我遵循了一些教程,并且将colab留在了video上。训练进行得很顺利,我保存了模型。现在,我想加载该模型并将自己的图像之一输入模型。这是我的尝试:
import tensorflow as tf
import cv2
from tensorflow import keras
model = tf.keras.models.load_model('rps.h5')
model.summary()
img = cv2.imread('my_hand_paper.png')
print(model.predict_classes(img))
但出现以下错误:
ValueError: Input 0 of layer sequential is incompatible with the layer: expected ndim=4, found ndim=3. Full shape received: [None, 300, 3]
我的图像和训练图像一样是300x300。我想问题是我必须以类似于训练数据的方式准备图像,但是我不确定如何做。这是准备训练数据的方式:
training_datagen = ImageDataGenerator(
rescale = 1./255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
train_generator = training_datagen.flow_from_directory(
TRAINING_DIR,
target_size=(150,150),
class_mode='categorical',
batch_size=126)
summary()的输出:
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 148, 148, 64) 1792
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 74, 74, 64) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 72, 72, 64) 36928
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 36, 36, 64) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 34, 34, 128) 73856
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 17, 17, 128) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 15, 15, 128) 147584
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 7, 7, 128) 0
_________________________________________________________________
flatten (Flatten) (None, 6272) 0
_________________________________________________________________
dropout (Dropout) (None, 6272) 0
_________________________________________________________________
dense (Dense) (None, 512) 3211776
_________________________________________________________________
dense_1 (Dense) (None, 3) 1539
=================================================================
Total params: 3,473,475
Trainable params: 3,473,475
Non-trainable params: 0
_________________________________________________________________
答案 0 :(得分:0)
当您要推理使用网络时,仍然必须使用批处理大小。在您的情况下,批量大小为1。
您可以使用以下代码添加批次:
img = cv2.resize(img, (150,150))
img = tf.expand_dims(img , 0)