将NxM特征向量作为numpy矩阵。是否有任何例程可以使用L1距离(曼哈顿距离)通过Kmeans算法对其进行聚类?
答案 0 :(得分:3)
这是一个使用L1距离(曼哈顿距离)的Kmeans算法。一般来说,特征向量表示为列表,很容易转换为numpy矩阵。
import random
#Manhattan Distance
def L1(v1,v2):
if(len(v1)!=len(v2):
print “error”
return -1
return sum([abs(v1[i]-v2[i]) for i in range(len(v1))])
# kmeans with L1 distance.
# rows refers to the NxM feature vectors
def kcluster(rows,distance=L1,k=4):# Cited from Programming Collective Intelligence
# Determine the minimum and maximum values for each point
ranges=[(min([row[i] for row in rows]),max([row[i] for row in rows])) for i in range(len(rows[0]))]
# Create k randomly placed centroids
clusters=[[random.random( )*(ranges[i][1]-ranges[i][0])+ranges[i][0] for i in range(len(rows[0]))] for j in range(k)]
lastmatches=None
for t in range(100):
print 'Iteration %d' % t
bestmatches=[[] for i in range(k)]
# Find which centroid is the closest for each row
for j in range(len(rows)):
row=rows[j]
bestmatch=0
for i in range(k):
d=distance(clusters[i],row)
if d<distance(clusters[bestmatch],row):
bestmatch=i
bestmatches[bestmatch].append(j)
## If the results are the same as last time, this is complete
if bestmatches==lastmatches:
break
lastmatches=bestmatches
# Move the centroids to the average of their members
for i in range(k):
avgs=[0.0]*len(rows[0])
if len(bestmatches[i])>0:
for rowid in bestmatches[i]:
for m in range(len(rows[rowid])):
avgs[m]+=rows[rowid][m]
for j in range(len(avgs)):
avgs[j]/=len(bestmatches[i])
clusters[i]=avgs
return bestmatches
答案 1 :(得分:2)
我不认为这是在scipy中明确提供的,但你应该看看以下内容:
答案 2 :(得分:2)
下面有代码 is-it-possible-to-specify-your-own-distance-function-using-scikits-learn-k-means, 它使用scipy.spatial.distance中的任意20个指标。 也可以看看 L1-or-L.5-metrics-for-clustering;你能用L1和L2评论你的结果吗?
答案 3 :(得分:-2)
看看pyclustering。在这里,您可以找到可配置为使用 L1 距离的 k-means 的实现。但是你必须将 numpy 数组转换成一个列表。
如何安装pyclustering
pip3 install pyclustering
从pyclustering复制的代码片段
pip3 install pyclustering
from pyclustering.cluster.kmeans import kmeans, kmeans_visualizer
from pyclustering.cluster.center_initializer import kmeans_plusplus_initializer
from pyclustering.samples.definitions import FCPS_SAMPLES
from pyclustering.utils import read_sample
sample = read_sample(FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS)
manhattan_metric = distance_metric(type_metric.MANHATTAN)
kmeans_instance = kmeans(sample, initial_centers, metric=manhattan_metric)
kmeans_instance.process()