如何计算投资组合的累积回报和投资

时间:2020-06-08 15:23:36

标签: python loops dataframe time-series finance

这是我的问题:

我有一个每月投资的DataFrame:

df = pd.DataFrame({'Dates':['2018-07-31','2018-07-31','2018-07-31','2018-08-31','2018-08-31','2018-08-31',
                               '2018-09-30','2018-09-30','2018-09-30'],
                      "Name":["Apple",'Google','Facebook','JP Morgan','IBM','Netflix',"Apple","Tesla","Boeing"],
                     "Monthly Return":[-0.018988,-0.028009,0.111742,-0.034540,-0.025806,-0.043647,0.001045,
                                       0.155379,0.011644],
                     "Total Weight":[0.7,0.2,0.1,0.5,0.3,0.2,0.6,0.2,0.2]})

我想计算累计投资额,但这样做有困难: 假设我们的初始投资为1000 $

如果我们考虑每个资产的月收益率和权重, 我们在2018-07-31有了这个:

Dates        Name     Return    Weight Investment Pofit/loss
2018-07-31   Apple    -0.018988  0.7       700       -13.29     
2018-07-31   Google   -0.028009  0.2       200       -5.60
2018-07-31   Facebook  0.111742  0.1       100       11.17

所以对于2018年7月,我以1000 $开始,到月底,我有992.28 $(1000-13.29-5.60 + 11.17) 该金额将在2018年8月重新投资,到本月底,我将:992.28美元+/- 2018年8月的总利润/亏损。

我的目标是通过考虑每个月的利润/亏损来确定最终金额,但我真的不知道该怎么做。

如果有人对此有任何想法,欢迎您! 如果您不太清楚,请告诉我

1 个答案:

答案 0 :(得分:1)

这是一个解决方案,为清楚起见,分为几个步骤:

df = pd.DataFrame({'Dates':['2018-07-31','2018-07-31','2018-07-31','2018-08-31','2018-08-31','2018-08-31',
                               '2018-09-30','2018-09-30','2018-09-30'],
                      "Name":["Apple",'Google','Facebook','JP Morgan','IBM','Netflix',"Apple","Tesla","Boeing"],
                     "Monthly Return":[-0.018988,-0.028009,0.111742,-0.034540,-0.025806,-0.043647,0.001045,
                                       0.155379,0.011644],
                     "Total Weight":[0.7,0.2,0.1,0.5,0.3,0.2,0.6,0.2,0.2]})

df["weighted_return"] = df["Monthly Return"] * df["Total Weight"]
# df.groupby("Dates", freq="1M")
df["Dates"] = pd.to_datetime(df.Dates)
df.set_index("Dates", inplace=True)
t = df.groupby(pd.Grouper(freq="M")).sum()

在这一点上,t是:

            Monthly Return  Total Weight  weighted_return  eom_value
Dates                                                               
2018-07-31        0.064745           1.0        -0.007719   0.992281
2018-08-31       -0.103993           1.0        -0.033741   0.966259
2018-09-30        0.168068           1.0         0.034032   1.034032

现在,我们可以使用cumprod来计算一段时间内的回报:

t["eom_value"] = 1 + t.weighted_return
t.eom_value.cumprod()

结果:

Dates
2018-07-31    0.992281
2018-08-31    0.958800
2018-09-30    0.991430