我们都知道用降维技术定义管道的通用方法,然后是用于训练和测试的模型。然后,我们可以将GridSearchCv应用于超参数调整。
grid = GridSearchCV(
Pipeline([
('reduce_dim', PCA()),
('classify', RandomForestClassifier(n_jobs = -1))
]),
param_grid=[
{
'reduce_dim__n_components': range(0.7,0.9,0.1),
'classify__n_estimators': range(10,50,5),
'classify__max_features': ['auto', 0.2],
'classify__min_samples_leaf': [40,50,60],
'classify__criterion': ['gini', 'entropy']
}
],
cv=5, scoring='f1')
grid.fit(X,y)
我能理解上面的代码。
现在我今天正在经历documentation,在那里我发现了一个有点奇怪的零件代码。
pipe = Pipeline([
# the reduce_dim stage is populated by the param_grid
('reduce_dim', 'passthrough'), # How does this work??
('classify', LinearSVC(dual=False, max_iter=10000))
])
N_FEATURES_OPTIONS = [2, 4, 8]
C_OPTIONS = [1, 10, 100, 1000]
param_grid = [
{
'reduce_dim': [PCA(iterated_power=7), NMF()],
'reduce_dim__n_components': N_FEATURES_OPTIONS, ### No PCA is used..??
'classify__C': C_OPTIONS
},
{
'reduce_dim': [SelectKBest(chi2)],
'reduce_dim__k': N_FEATURES_OPTIONS,
'classify__C': C_OPTIONS
},
]
reducer_labels = ['PCA', 'NMF', 'KBest(chi2)']
grid = GridSearchCV(pipe, n_jobs=1, param_grid=param_grid)
X, y = load_digits(return_X_y=True)
grid.fit(X, y)
首先,在定义管道时,它使用字符串“ passthrough”而不是对象。
('reduce_dim', 'passthrough'), ```
[PCA(iterated_power=7), NMF()]
如何工作?
'reduce_dim': [PCA(iterated_power=7), NMF()],
'reduce_dim__n_components': N_FEATURES_OPTIONS, # here
请有人向我解释代码。
已解决-在一行中,顺序为['PCA', 'NMF', 'KBest(chi2)']
由提供- seralouk (请参见下面的答案)
答案 0 :(得分:1)
据我所知等效。
在文档中您具有以下内容:
pipe = Pipeline([
# the reduce_dim stage is populated by the param_grid
('reduce_dim', 'passthrough'),
('classify', LinearSVC(dual=False, max_iter=10000))
])
N_FEATURES_OPTIONS = [2, 4, 8]
C_OPTIONS = [1, 10, 100, 1000]
param_grid = [
{
'reduce_dim': [PCA(iterated_power=7), NMF()],
'reduce_dim__n_components': N_FEATURES_OPTIONS,
'classify__C': C_OPTIONS
},
{
'reduce_dim': [SelectKBest(chi2)],
'reduce_dim__k': N_FEATURES_OPTIONS,
'classify__C': C_OPTIONS
},
]
最初我们有('reduce_dim', 'passthrough'),
,然后是'reduce_dim': [PCA(iterated_power=7), NMF()]
PCA的定义在第二行完成。
您可以选择以下定义:
pipe = Pipeline([
# the reduce_dim stage is populated by the param_grid
('reduce_dim', PCA(iterated_power=7)),
('classify', LinearSVC(dual=False, max_iter=10000))
])
N_FEATURES_OPTIONS = [2, 4, 8]
C_OPTIONS = [1, 10, 100, 1000]
param_grid = [
{
'reduce_dim__n_components': N_FEATURES_OPTIONS,
'classify__C': C_OPTIONS
},
{
'reduce_dim': [SelectKBest(chi2)],
'reduce_dim__k': N_FEATURES_OPTIONS,
'classify__C': C_OPTIONS
},
]