我正在尝试使用此https://github.com/tensorflow/models/tree/master/research/object_detection作为参考,在自定义数据集上训练我的模型。 基本上,我的Acer Nitro 50 Desktop具有系统配置 处理器:Intel®Core™i5-8400 CPU @ 2.80GHz×6 图形:GeForce GTX 1050 / PCIe / SSE2(2 GB), 内存(RAM):8GB DDR4内存
我正在使用tensorflow 1.12.0 gpu | bazel 0.15.0 | python 3.5 | GCC 4.8 | cudnn 7 | Cuda 9.0在我的自定义ms coco数据集上训练带有一个10.4 GB(65000张图像)训练数据和533.4 MB(3300张图像)验证数据的我的自定义ms coco数据集上的faster_rcnn_inception_v2_coco模型,以进行200k epochs(num_steps)的对象检测,默认为600 x 1024分辨率(在faster_rcnn_inception_v2_coco中设置)。我正在8个课程上训练和验证模型。因此,当我训练模型时,一段时间后精度(图)不会增加,损耗也不会减少。训练成功完成后,我在各种图像上运行了模型,并注意到了几件事。我有几个问题
您可以看到上面的图像,我的模型在总损失和学习率不一致的情况下无法有效训练。因此,地图不会上升,导致精度降低。如果有人可以指导我,那将真的很有帮助。我正试图从一段时间找出这个问题。我没有收到任何错误或警告。
这是在文件fast_rcnn_inception_v2.config中训练模型所需的更改
# Faster R-CNN with Inception v2, configuration for MSCOCO Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.
model {
faster_rcnn {
num_classes: 8
#Default configuration for image_resizer no changes made in this function
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 600
max_dimension: 1024
}
}
feature_extractor {
type: 'faster_rcnn_inception_v2'
first_stage_features_stride: 16
}
first_stage_anchor_generator {
grid_anchor_generator {
scales: [0.25, 0.5, 1.0, 2.0]
aspect_ratios: [0.5, 1.0, 2.0]
height_stride: 16
width_stride: 16
}
}
first_stage_box_predictor_conv_hyperparams {
op: CONV
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
truncated_normal_initializer {
stddev: 0.01
}
}
}
first_stage_nms_score_threshold: 0.0
first_stage_nms_iou_threshold: 0.7
first_stage_max_proposals: 300
first_stage_localization_loss_weight: 2.0
first_stage_objectness_loss_weight: 1.0
initial_crop_size: 14
maxpool_kernel_size: 2
maxpool_stride: 2
second_stage_box_predictor {
mask_rcnn_box_predictor {
use_dropout: false
dropout_keep_probability: 1.0
fc_hyperparams {
op: FC
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
variance_scaling_initializer {
factor: 1.0
uniform: true
mode: FAN_AVG
}
}
}
}
}
second_stage_post_processing {
batch_non_max_suppression {
score_threshold: 0.0
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 300
}
score_converter: SOFTMAX
}
second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0
}
}
train_config: {
batch_size: 1
optimizer {
momentum_optimizer: {
learning_rate: {
manual_step_learning_rate {
initial_learning_rate: 0.0002
schedule {
step: 900000
learning_rate: .00002
}
schedule {
step: 1200000
learning_rate: .000002
}
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
gradient_clipping_by_norm: 10.0
fine_tune_checkpoint: "models/model.ckpt"
from_detection_checkpoint: true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the COCO dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 200000
data_augmentation_options {
random_horizontal_flip {
}
}
}
train_input_reader: {
tf_record_input_reader {
input_path: "data/dataset_tools_train.tfrecord"
}
label_map_path: "data/label.pbtxt"
}
eval_config: {
num_examples: 3300
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals: 10
}
eval_input_reader: {
tf_record_input_reader {
input_path: "data/dataset_tools_val.tfrecord"
}
label_map_path: "data/dataset_tools_val.tfrecord"
shuffle: false
num_readers: 1
}