我正在尝试使用GridSearchCV和管道将这些机器学习方法评估为相同的数据,当我在可以使用的相同方法中更改参数时,但是当我使用多个方法时会出现错误
pipe_steps = [
('scaler', StandardScaler()),
('logistic', LogisticRegression()),
('SVM',SVC()),
('KNN',KNeighborsClassifier())]
check_params={
'logistic__C':[1,1e5],
'SVM__C':[1,1e5],
'KNN__n_neighbors':[3,5],
'KNN__metric':['euclidean','manhattan']
}
pipeline = Pipeline(pipe_steps)
GridS = GridSearchCV(pipeline, param_grid=check_params)
GridS.fit(X, y)
print('Score %3.2f' %GridS.score(X, y))
print('Best Fit')
print(GridS.best_params_)
在下面的管道行上给出错误消息
TypeError Traceback (most recent call last)
<ipython-input-139-75960299bc1c> in <module>
13 }
14
---> 15 pipeline = Pipeline(pipe_steps)
16
17 BCX_Grid = GridSearchCV(pipeline, param_grid=check_params)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\pipeline.py in __init__(self, steps, memory, verbose)
133 def __init__(self, steps, memory=None, verbose=False):
134 self.steps = steps
--> 135 self._validate_steps()
136 self.memory = memory
137 self.verbose = verbose
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\pipeline.py in _validate_steps(self)
183 "transformers and implement fit and transform "
184 "or be the string 'passthrough' "
--> 185 "'%s' (type %s) doesn't" % (t, type(t)))
186
187 # We allow last estimator to be None as an identity transformation
TypeError: All intermediate steps should be transformers and implement fit and transform or be the string 'passthrough' 'LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, l1_ratio=None, max_iter=100,
multi_class='warn', n_jobs=None, penalty='l2',
random_state=None, solver='warn', tol=0.0001, verbose=0,
warm_start=False)' (type <class 'sklearn.linear_model.logistic.LogisticRegression'>) doesn't
谢谢
答案 0 :(得分:0)
您的问题不是超参数,因为它们的定义正确。问题是所有中间步骤都应为transformers
,如错误所示。您的管道SVM
中的计算机不是变压器。
查看此post
答案 1 :(得分:0)
您需要将管道拆分为多个管道,为此,我有一个解决方案,该解决方案要求使用一系列网格参数来确定管道的每个步骤。
pipeline = Pipeline([
('transformer', StandardScaler(),),
('model', 'passthrough',),
])
params = [
{
'model': (LogisticRegression(),),
'model__C': (1, 1e5,),
},
{
'model': (SVC(),),
'model__C': (1, 1e5,),
},
{
'model': (KNeighborsClassifier(),),
'model__n_neighbors': (3, 5,),
'model__metric': ('euclidean', 'manhattan',),
}
]
grid_Search = GridSearchCV(pipeline, params)
通过这种策略,您可以动态定义管道的步骤。