假设我有这个VALUE
对象:
07/02/2002
要将超参数传递到支持向量分类器(SVC),我可以执行以下操作:
d = []
for h in a:
scanner = {
'ScannerName' : h['name'],
'AntennaNumber' : [],
'LastScanDate' : []
}
for antennae in h['antennae']:
scanner['AntennaNumber'].append(antennae['antenna'])
scanner['LastScanDate'].append(antennae['lastScanDate'])
d.append(scanner)
print(d)
然后,我可以使用Pipeline
:
from sklearn.pipeline import Pipeline
pipe = Pipeline([
('my_transform', my_transform()),
('estimator', SVC())
])
我们知道 linear 内核不使用gamma作为超参数。 那么,如何在此GridSearch中包含 linear 内核?
例如,在简单的pipe_parameters = {
'estimator__gamma': (0.1, 1),
'estimator__kernel': (rbf)
}
(没有管道)中,我可以这样做:
GridSearchCV
因此,我需要这种代码的有效版本:
from sklearn.model_selection import GridSearchCV
grid = GridSearchCV(pipe, pipe_parameters)
grid.fit(X_train, y_train)
我想将以下组合用作超参数:
GridSearch
答案 0 :(得分:2)
您快到了。类似于为SVC
模型创建多个词典的方法,为管道创建词典列表。
尝试以下示例:
from sklearn.datasets import fetch_20newsgroups
from sklearn.pipeline import pipeline
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.svm import SVC
categories = [
'alt.atheism',
'talk.religion.misc',
'comp.graphics',
'sci.space',
]
remove = ('headers', 'footers', 'quotes')
data_train = fetch_20newsgroups(subset='train', categories=categories,
shuffle=True, random_state=42,
remove=remove)
pipe = Pipeline([
('bag_of_words', CountVectorizer()),
('estimator', SVC())])
pipe_parameters = [
{'bag_of_words__max_features': (None, 1500),
'estimator__C': [ 0.1, ],
'estimator__gamma': [0.0001, 1],
'estimator__kernel': ['rbf']},
{'bag_of_words__max_features': (None, 1500),
'estimator__C': [0.1, 1],
'estimator__kernel': ['linear']}
]
from sklearn.model_selection import GridSearchCV
grid = GridSearchCV(pipe, pipe_parameters, cv=2)
grid.fit(data_train.data, data_train.target)
grid.best_params_
# {'bag_of_words__max_features': None,
# 'estimator__C': 0.1,
# 'estimator__kernel': 'linear'}