import tensorflow as tf
from tensorflow.python.ops import rnn
class my_rnn(tf.keras.layers.Layer):
def _init_(self, rnn_units, input_dim, output_dim):
super(my_rnn,self)._init_()
self.W_xh=self.add_weight([rnn_units, input_dim])
self.W_hh=self.add_weight([rnn_units, rnn_units])
self.W_hy=self.add_weight([output_dim, rnn_units])
self.h= tf.zeros([rnn_units,1])
def call(self,x,y):
self.h=tf.math.tanh(self.W_hh * self.h+self.W_xh * x)
output= self.W_hy*self.h
return output
my_object= my_rnn()
hidden_state=[0,0,0,0,0]
sentence=["the","color","of","Sun","is"]
for word in sentence:
prediction, hidden_state= my_object(word, hidden_state)
next_word=prediction
现在这是错误:
AttributeError
<ipython> in <module>()
24 sentence=["the","color","of","Sun","is"]
25 for word in sentence:
---> 26 prediction, hidden_state= my_object(word, hidden_state)
27 next_word=prediction
<ipython> in call(self, x, y)
15
16 def call(self,x,y):
---> 17 self.h=tf.math.tanh(self.W_hh * self.h+self.W_xh * x)
18 output= self.W_hy*self.h
19 return output
AttributeError: 'my_rnn' object has no attribute 'W_hh'
我该如何解决? hidden_state的通过是否存在任何问题? 我刚刚开始训练有关神经网络的知识,所以如果有人能解决它,将非常感激。