转移学习以进行视频分类

时间:2020-04-25 19:51:33

标签: tensorflow keras transfer-learning pre-trained-model activity-recognition

如何使用预训练模型训练视频分类模型?我的数据集形状为(4000,10,150,150,1),我尝试使用Conv2D TimeDistributed对人类动作识别进行分类。 我可以在不进行转学的情况下进行培训,但准确性却很差。 我尝试过的:

<?php 
  $listReplay =$wpdb->get_results("(SELECT * FROM table_one WHERE id = ".$value['secondary_item_id']."  AND type ='activity_comment') UNION DISTINCT 
                            (SELECT * FROM table_one WHERE secondary_item_id = ".$value['secondary_item_id']." AND type ='activity_comment')");
?>

但是我得到了from keras.applications import VGG16 conv_base = VGG16(weights='imagenet', include_top=False, input_shape=(150, 150, 3)) model = models.Sequential() model.add(conv_base) model.add(TimeDistributed(Conv2D(96, (3, 3), padding='same', input_shape=x_train.shape[1:]))) model.add(TimeDistributed(Activation('relu'))) model.add(TimeDistributed(Conv2D(128, (3, 3)))) model.add(TimeDistributed(Activation('relu'))) model.add(TimeDistributed(MaxPooling2D(pool_size=(2, 2)))) model.add(TimeDistributed(Dropout(0.35))) . . . .
有人有主意吗?

1 个答案:

答案 0 :(得分:3)

我假设每个视频有10帧。这是一个简单的模型,它为每个帧使用VGG16功能(GloabAveragePooling),并使用LSTM对帧序列进行分类。

您可以通过添加更多层,更改超参数进行试验。

N.B:您的模型中存在许多不一致之处,包括直接将5维数据传递给需要4维数据的VGG16。

from tensorflow.keras.layers import *
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.optimizers import Adam
import tensorflow as tf
import numpy as np

from tensorflow.keras.applications import VGG16
conv_base = VGG16(weights='imagenet',
                  include_top=False,
                  input_shape=(150, 150, 3))

IMG_SIZE=(150,150,3)
num_class = 3

def create_base():
  conv_base = VGG16(weights='imagenet',
                  include_top=False,
                  input_shape=(150, 150, 3))
  x = GlobalAveragePooling2D()(conv_base.output)
  base_model = Model(conv_base.input, x)
  return base_model

conv_base = create_base()

ip = Input(shape=(10,150,150,3))
t_conv = TimeDistributed(conv_base)(ip) # vgg16 feature extractor

t_lstm = LSTM(10, return_sequences=False)(t_conv)

f_softmax = Dense(num_class, activation='softmax')(t_lstm)

model = Model(ip, f_softmax)

model.summary()
Model: "model_5"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_32 (InputLayer)        [(None, 10, 150, 150, 3)] 0         
_________________________________________________________________
time_distributed_4 (TimeDist (None, 10, 512)           14714688  
_________________________________________________________________
lstm_1 (LSTM)                (None, 10)                20920     
_________________________________________________________________
dense (Dense)                (None, 3)                 33        
=================================================================
Total params: 14,735,641
Trainable params: 14,735,641
Non-trainable params: 0
________________________