我正在尝试透视Johns Hopkins数据,以使日期列为行,而其余信息保持不变。前七个列应为列,而其余列(日期列)应为行。任何帮助将不胜感激。
加载和过滤数据
import pandas as pd
import numpy as np
deaths_url = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_US.csv'
confirmed_url = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_US.csv'
dea = pd.read_csv(deaths_url)
con = pd.read_csv(confirmed_url)
dea = dea[(dea['Province_State'] == 'Texas')]
con = con[(con['Province_State'] == 'Texas')]
查看数据的新近度并进行数据透视
# get the most recent data of data
mostRecentDate = con.columns[-1] # gets the columns of the matrix
# show the data frame
con.sort_values(by=mostRecentDate, ascending = False).head(10)
# save this index variable to save the order.
index = data.columns.drop(['Province_State'])
# The pivot_table method will eliminate duplicate entries from Countries with more than one city
data.pivot_table(index = 'Admin2', aggfunc = sum)
# formatting using a variety of methods to process and sort data
finalFrame = data.transpose().reindex(index).transpose().set_index('Admin2').sort_values(by=mostRecentDate, ascending=False).transpose()
结果数据框如下所示,但是它没有保留任何日期时间
我也尝试过:
date_columns = con.iloc[:, 7:].columns
con.pivot(index = date_columns, columns = 'Admin2', values = con.iloc[:, 7:])
ValueError: Must pass DataFrame with boolean values only
编辑: 按照指导,我尝试了第一个答案中列出的melt命令,它不创建日期行,只是删除了所有其他非日期值。
date_columns = con.iloc[:, 7:].columns
con.melt(id_vars=date_columns)
最终结果应如下所示:
Date iso2 iso3 code3 FIPS Admin2 Province_State Country_Region Lat Long_ Combined_Key
1/22/2020 US USA 840 48001 Anderson Texas US 31.81534745 -95.65354823 Anderson, Texas, US
1/22/2020 US USA 840 48003 Andrews Texas US 32.30468633 -102.6376548 Andrews, Texas, US
1/22/2020 US USA 840 48005 Angelina Texas US 31.25457347 -94.60901487 Angelina, Texas, US
1/22/2020 US USA 840 48007 Aransas Texas US 28.10556197 -96.9995047 Aransas, Texas, US
答案 0 :(得分:0)
使用pandas melt。很好的例子here。
示例:
In [41]: cheese = pd.DataFrame({'first': ['John', 'Mary'],
....: 'last': ['Doe', 'Bo'],
....: 'height': [5.5, 6.0],
....: 'weight': [130, 150]})
....:
In [42]: cheese
Out[42]:
first last height weight
0 John Doe 5.5 130
1 Mary Bo 6.0 150
In [43]: cheese.melt(id_vars=['first', 'last'])
Out[43]:
first last variable value
0 John Doe height 5.5
1 Mary Bo height 6.0
2 John Doe weight 130.0
3 Mary Bo weight 150.0
In [44]: cheese.melt(id_vars=['first', 'last'], var_name='quantity')
Out[44]:
first last quantity value
0 John Doe height 5.5
1 Mary Bo height 6.0
2 John Doe weight 130.0
3 Mary Bo weight 150.0
根据您的情况,您需要在一个数据框(即con
或finalframe
或日期列所在的任何位置)上进行操作。例如:
con.melt(id_vars=date_columns)
请参阅具体示例here。