我正在使用python 3.7.6
,并且正在尝试使用GridSearchCV
调整一些超参数
我通过以下步骤创建了pipeline
:scaling-> feature selection -> model
但是我在功能选择步骤的C
参数上遇到了错误。
steps = [('scaler', StandardScaler()),
('FeatureSelection', SelectFromModel(LogisticRegression(penalty='l1', solver='liblinear'))),
('SVM', SVC())]
pipeline = Pipeline(steps) # define the pipeline object.
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=30, stratify=y)
parameteres = {'SVM__C': [0.001, 0.1, 10, 100, 10e5],
'SVM__gamma':[0.1,0.01],
'FeatureSelection__C':['0','0.5']}
grid = GridSearchCV(pipeline, param_grid=parameteres, cv=5, n_jobs=-1)
grid.fit(X_train, y_train)
print("pipeline score: ", grid.score(X_test, y_test))
我遇到以下错误:
ValueError: Invalid parameter C for estimator SelectFromModel(estimator=LogisticRegression(C=1.0, class_weight=None,
dual=False, fit_intercept=True,
intercept_scaling=1, l1_ratio=None,
max_iter=100, multi_class='auto',
n_jobs=None, penalty='l1',
random_state=None,
solver='liblinear', tol=0.0001,
verbose=0, warm_start=False),
max_features=None, norm_order=1, prefit=False, threshold=None). Check the list of available parameters with `estimator.get_params().keys()`.
出什么问题了,我该如何解决?
答案 0 :(得分:1)
照原样,管道在C
中查找参数SelectFromModel
,找不到一个参数(不足为奇,因为模块没有这样的参数),并引发错误。由于您实际上想要C
的参数LogisticRegression
,因此您应该更深入一点:在FeatureSelection__C
网格中将FeatureSelection__estimator__C
更改为parameters
,就可以了。