这是我第一次在这里发布。
我是一名Python机器学习新手,我一直在Jupyter Notebook(v 6.0.3)中使用Scikit-Learn(v 0.22.1)自学。如果您能帮助我解决这个问题,我将非常高兴。
我完全从auto_examples_python / datasets / plot_cv_diabetes.py(从scikit-learn 0.22.1下载的文件)中复制了此代码,但该代码无法在我的Jupyter笔记本上运行:
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.linear_model import LassoCV, Lasso
from sklearn.model_selection import GridSearchCV, KFold
X, y = datasets.load_diabetes(return_X_y = True)
X = X[:150]
y = y[:150]
lasso = Lasso(alpha = 1.0, random_state = 0, max_iter = 10000)
alphas = np.logspace(-4, -0.5, 30)
tuned_parameters = [{'alphas': alphas}]
n_folds = 5
clf = GridSearchCV(lasso, tuned_parameters, cv=n_folds, refit = False)
clf.fit(X, y)
它给了我错误:
>ValueError: Invalid parameter alphas for estimator Lasso(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=10000,
normalize=False, positive=False, precompute=False, random_state=0,
selection='cyclic', tol=0.0001, warm_start=False). Check the list of available parameters with `estimator.get_params().keys()`.
同样,当我这样做时:
scores = clf.cv_results_['mean_test_score']
scores_std = clf.cv_results_['std_test_score']
plt.figure().set_size_inches(8, 6)
plt.semilogx(alphas, score)
我得到:
>AttributeError: 'GridSearchCV' object has no attribute 'cv_results_'
谢谢您的帮助。
答案 0 :(得分:0)
根据Lasso doc,您应该使用alpha
。
实际上,修改:
tuned_parameters = [{'alphas': alphas}]
进入:
tuned_parameters = [{'alpha': alphas}]
您的代码应该可以使用。