我开发了一个深度学习模型,我想知道为什么我的验证损失和验证准确率会波动。这是过度拟合的标志吗?我尝试使用诸如退学和学习率之类的超参数。我有7个输入和2个输出。训练数据的大小约为57381。
model7 <- keras_model_sequential()
model7 %>%
layer_dense(units = 8,
kernel_regularizer = regularizer_l2(0.001),
activation = "relu",
input_shape = c(7)) %>%
layer_dropout(rate = 0.2) %>%
layer_dense(units = 22,
kernel_regularizer = regularizer_l2(0.001),
activation = "relu") %>%
layer_dropout(rate = 0.2) %>%
layer_dense(units = 2,
activation = "softmax")
summary(model7)
# Compiling the model
model7 %>% compile(loss = "categorical_crossentropy",
optimizer = "adam",
metrics = c("accuracy"))
history <- model7 %>%
fit(x_train,
y_train,
epoch = 200,
batch_size = 64,
validation_split = 0.2)
您能告诉我我是否过拟合,是否可以提出一些建议来修改我的模型?