TypeError:根据规则“安全”,无法将数组数据从dtype('O')转换为dtype('float64')

时间:2020-01-08 19:39:39

标签: python scipy typeerror mpmath

我需要对类型g(u)jn(u)进行积分,其中g(u)是不带零的平滑函数,而在Bessel函数中具有无穷零的jn(u),但出现以下错误:

TypeError: Cannot cast array data from dtype('O') to dtype('float64') according to the rule 'safe'

首先,我需要将变量x更改为变量u,并在新变量u中进行积分,但是函数u(x)在解析上是不可逆的,因此我需要使用插值对这一数值进行反演。

import numpy as np
from scipy.interpolate import InterpolatedUnivariateSpline

x = np.linspace(0.1, 100, 1000)
u = lambda x: x*np.exp(x)
dxdu_x = lambda x: 1/((1+x) * np.exp(x))               ## dxdu as function of x: not invertible
dxdu_u = InterpolatedUnivariateSpline(u(x), dxdu_x(x)) ## dxdu as function of u: change of variable

此后,积分为:

from mpmath import mp

def f(n):
    integrand = lambda U: dxdu_u(U) * mp.besselj(n,U)
    bjz = lambda nth: mp.besseljzero(n, nth)
    return mp.quadosc(integrand, [0,mp.inf], zeros=bjz)

我使用quadosc中的mpmath,而不使用quad中的scipy,因为quadosc更适合于集成快速振荡函数(如Bessel函数)。但是,另一方面,这迫使我使用两个不同的包,scipy通过插值来计算dxdu_u,而mpmath来计算Bessel函数mp.besselj(n,U)及其积分产品dxdu_u(U) * mp.bessel(n,U),因此我怀疑两个不同软件包的混合使用会产生一些问题/冲突。所以当我做的时候:

print(f(0))

我得到了错误:

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-38-ac2976a6b736> in <module>
     12     return mp.quadosc(integrand, [0,mp.inf], zeros=bjz)
     13 
---> 14 f(0)

<ipython-input-38-ac2976a6b736> in f(n)
     10     integrand = lambda U: dxdu_u(U) * mp.besselj(n,U)
     11     bjz = lambda nth: mp.besseljzero(n, nth)
---> 12     return mp.quadosc(integrand, [0,mp.inf], zeros=bjz)
     13 
     14 f(0)

TypeError: Cannot cast array data from dtype('O') to dtype('float64') according to the rule 'safe'

有人知道我可以解决这个问题吗? 谢谢

2 个答案:

答案 0 :(得分:2)

完整的追溯(截取的部分)表明该错误出在univariatespline对象的__call__方法中。因此,实际上的问题是,mpmath集成例程以其mpf小数形式输入,而scipy无法处理它们。

然后最简单的解决方法是将integrand参数的有问题的部分手动转换为浮点数:

integrand = lambda U: dxdu_u(float(U)) * mp.besselj(n,U)

通常,这容易产生数字错误(mpmath故意使用其高精度变量!),因此请谨慎操作。在这种特定情况下,这可能没问题,因为插值实际上是以双精度完成的。不过,最好检查一下结果。

一种可能的选择是避免使用mpmath并在weights中使用scipy.integrate.quad参数,请参见docs(向下滚动到weights="sin"部分)

另一种选择是始终坚持使用mpmath并在纯python中实现插值(这样,mpf对象可能很好,因为它们应该支持常用的算术)。一个简单的线性插值可能就足够了。如果不是,那么编写自己的三次样条插值器就没什么大不了了。

答案 1 :(得分:0)

完整的追溯:

In [443]: f(0)                                                                  
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-443-6bfbdbfff9c4> in <module>
----> 1 f(0)

<ipython-input-440-7ebeff3611f6> in f(n)
      2     integrand = lambda U: dxdu_u(U) * mp.besselj(n,U)
      3     bjz = lambda nth: mp.besseljzero(n, nth)
----> 4     return mp.quadosc(integrand, [0,mp.inf], zeros=bjz)
      5 

/usr/local/lib/python3.6/dist-packages/mpmath/calculus/quadrature.py in quadosc(ctx, f, interval, omega, period, zeros)
    998         #    raise ValueError("zeros do not appear to be correctly indexed")
    999         n = 1
-> 1000         s = ctx.quadgl(f, [a, zeros(n)])
   1001         def term(k):
   1002             return ctx.quadgl(f, [zeros(k), zeros(k+1)])

/usr/local/lib/python3.6/dist-packages/mpmath/calculus/quadrature.py in quadgl(ctx, *args, **kwargs)
    807         """
    808         kwargs['method'] = 'gauss-legendre'
--> 809         return ctx.quad(*args, **kwargs)
    810 
    811     def quadosc(ctx, f, interval, omega=None, period=None, zeros=None):

/usr/local/lib/python3.6/dist-packages/mpmath/calculus/quadrature.py in quad(ctx, f, *points, **kwargs)
    740             ctx.prec += 20
    741             if dim == 1:
--> 742                 v, err = rule.summation(f, points[0], prec, epsilon, m, verbose)
    743             elif dim == 2:
    744                 v, err = rule.summation(lambda x: \

/usr/local/lib/python3.6/dist-packages/mpmath/calculus/quadrature.py in summation(self, f, points, prec, epsilon, max_degree, verbose)
    230                     print("Integrating from %s to %s (degree %s of %s)" % \
    231                         (ctx.nstr(a), ctx.nstr(b), degree, max_degree))
--> 232                 results.append(self.sum_next(f, nodes, degree, prec, results, verbose))
    233                 if degree > 1:
    234                     err = self.estimate_error(results, prec, epsilon)

/usr/local/lib/python3.6/dist-packages/mpmath/calculus/quadrature.py in sum_next(self, f, nodes, degree, prec, previous, verbose)
    252         case the quadrature rule is able to reuse them.
    253         """
--> 254         return self.ctx.fdot((w, f(x)) for (x,w) in nodes)
    255 
    256 

/usr/local/lib/python3.6/dist-packages/mpmath/ctx_mp_python.py in fdot(ctx, A, B, conjugate)
    942         hasattr_ = hasattr
    943         types = (ctx.mpf, ctx.mpc)
--> 944         for a, b in A:
    945             if type(a) not in types: a = ctx.convert(a)
    946             if type(b) not in types: b = ctx.convert(b)

/usr/local/lib/python3.6/dist-packages/mpmath/calculus/quadrature.py in <genexpr>(.0)
    252         case the quadrature rule is able to reuse them.
    253         """
--> 254         return self.ctx.fdot((w, f(x)) for (x,w) in nodes)
    255 
    256 

<ipython-input-440-7ebeff3611f6> in <lambda>(U)
      1 def f(n):
----> 2     integrand = lambda U: dxdu_u(U) * mp.besselj(n,U)
      3     bjz = lambda nth: mp.besseljzero(n, nth)
      4     return mp.quadosc(integrand, [0,mp.inf], zeros=bjz)
      5 

这时它开始使用scipy插值代码

/usr/local/lib/python3.6/dist-packages/scipy/interpolate/fitpack2.py in __call__(self, x, nu, ext)
    310             except KeyError:
    311                 raise ValueError("Unknown extrapolation mode %s." % ext)
--> 312         return fitpack.splev(x, self._eval_args, der=nu, ext=ext)
    313 
    314     def get_knots(self):

/usr/local/lib/python3.6/dist-packages/scipy/interpolate/fitpack.py in splev(x, tck, der, ext)
    366         return tck(x, der, extrapolate=extrapolate)
    367     else:
--> 368         return _impl.splev(x, tck, der, ext)
    369 
    370 

/usr/local/lib/python3.6/dist-packages/scipy/interpolate/_fitpack_impl.py in splev(x, tck, der, ext)
    596         shape = x.shape
    597         x = atleast_1d(x).ravel()
--> 598         y, ier = _fitpack._spl_(x, der, t, c, k, ext)
    599 
    600         if ier == 10:

TypeError: Cannot cast array data from dtype('O') to dtype('float64') according to the rule 'safe'

_fitpack._spl_可能是编译后的代码(为了提高速度)。它不能直接使用mpmath对象;它必须通过与C兼容的double传递其值。

为说明问题,请制作一个mpmath对象的numpy数组:

In [444]: one,two = mp.mpmathify(1), mp.mpmathify(2)                            
In [445]: arr = np.array([one,two])                                             
In [446]: arr                                                                   
Out[446]: array([mpf('1.0'), mpf('2.0')], dtype=object)

In [447]: arr.astype(float)    # default 'unsafe' casting                                                     
Out[447]: array([1., 2.])
In [448]: arr.astype(float, casting='safe')                                     
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-448-4860036bcca8> in <module>
----> 1 arr.astype(float, casting='safe')

TypeError: Cannot cast array from dtype('O') to dtype('float64') according to the rule 'safe'

使用integrand = lambda U: dxdu_u(float(U)) * mp.besselj(n,U)

In [453]: f(0)      # a minute or so later                                                                
Out[453]: mpf('0.61060303588231069')