当我在下面运行代码时,我得到:
TypeError:无法根据规则“安全”将数组数据从dtype('O')转换为dtype('int64')
但是我不知道dtype('O')
和dtype('int64')
在哪里。有人知道在哪里解析吗?
import collections
import numpy as np
import math
import pandas as pd
def pre_prob(y):
y_dict = collections.Counter(y)
pre_probab = np.ones(2)
for i in range(0, 2):
pre_probab[i] = y_dict[i]/y.shape[0]
return pre_probab
def mean_var(X, y):
n_features = X.shape[1]
m = np.ones((2, n_features))
v = np.ones((2, n_features))
n_0 = np.bincount(y)[np.nonzero(np.bincount(y))[0]][0]
x0 = np.ones((n_0, n_features))
x1 = np.ones((X.shape[0] - n_0, n_features))
k = 0
for i in range(0, X.shape[0]):
if y[i] == 0:
x0[k] = X[i]
k = k + 1
k = 0
for i in range(0, X.shape[0]):
if y[i] == 1:
x1[k] = X[i]
k = k + 1
for j in range(0, n_features):
m[0][j] = np.mean(x0.T[j])
v[0][j] = np.var(x0.T[j])*(n_0/(n_0 - 1))
m[1][j] = np.mean(x1.T[j])
v[1][j] = np.var(x1.T[j])*((X.shape[0]-n_0)/((X.shape[0]- n_0) - 1))
return m, v # mean and variance
def prob_feature_class(m, v, x):
n_features = m.shape[1]
pfc = np.ones(2)
for i in range(0, 2):
product = 1
for j in range(0, n_features):
product = product * (1/math.sqrt(2*3.14*v[i][j])) * math.exp(-0.5* pow((x[j] - m[i][j]),2)/v[i][j])
pfc[i] = product
return pfc
def GNB(X, y, x):
m, v = mean_var(X, y)
pfc = prob_feature_class(m, v, x)
pre_probab = pre_prob(y)
pcf = np.ones(2)
total_prob = 0
for i in range(0, 2):
total_prob = total_prob + (pfc[i] * pre_probab[i])
for i in range(0, 2):
pcf[i] = (pfc[i] * pre_probab[i])/total_prob
prediction = int(pcf.argmax())
return m, v, pre_probab, pfc, pcf, prediction