我尝试使用SGD,Adadelta,Adabound和Adam。一切都给我带来了验证准确性的波动。我在keras中尝试了所有激活功能,但仍然有val_acc的波动。
培训样本:1352
验证样本:339
Validation Accuracy
# first (and only) CONV => RELU => POOL block
inpt = Input(shape = input_shape)
x = Conv2D(32, (3, 3), padding = "same")(inpt)
x = Activation("swish")(x)
x = BatchNormalization(axis = channel_dim)(x)
x = MaxPooling2D(pool_size = (3, 3))(x)
# x = Dropout(0.25)(x)
# first CONV => RELU => CONV => RELU => POOL block
x = Conv2D(64, (3, 3), padding = "same")(x)
x = Activation("swish")(x)
x = BatchNormalization(axis = channel_dim)(x)
x = Conv2D(64, (3, 3), padding = "same")(x)
x = Activation("swish")(x)
x = BatchNormalization(axis = channel_dim)(x)
x = MaxPooling2D(pool_size = (2, 2))(x)
# x = Dropout(0.25)(x)
# second CONV => RELU => CONV => RELU => POOL Block
x = Conv2D(128, (3, 3), padding = "same")(x)
x = Activation("swish")(x)
x = BatchNormalization(axis = channel_dim)(x)
x = Conv2D(128, (3, 3), padding = "same")(x)
x = Activation("swish")(x)
x = BatchNormalization(axis = channel_dim)(x)
x = MaxPooling2D(pool_size = (2, 2))(x)
# x = Dropout(0.25)(x)
# first (and only) FC layer
x = Flatten()(x) # Change to GlobalMaxPooling2D
x = Dense(256, activation = 'swish')(x)
x = BatchNormalization(axis = channel_dim)(x)
x = Dropout(0.4)(x)
x = Dense(128, activation = 'swish')(x)
x = BatchNormalization()(x)
x = Dropout(0.4)(x)
x = Dense(64, activation = 'swish')(x)
x = BatchNormalization()(x)
x = Dropout(0.3)(x)
x = Dense(32, activation = 'swish')(x)
x = BatchNormalization()(x)
x = Dense(nc, activation = 'softmax')(x)
model = Model(inputs=inpt, outputs = x)
model.compile(loss = 'categorical_crossentropy', optimizer = 'sgd', metrics = ['accuracy'])
答案 0 :(得分:0)
您的模型可能对噪声过于敏感,请参阅此answer。
根据链接中的答案以及我从模型中看到的内容,对于您拥有的数据量,网络可能太深(大型模型且数据不足==>过度拟合==>噪声敏感性)。我建议使用更简单的模型进行健全性检查。
学习率也可能是一个可能的原因(如Neb所述)。您使用的是sgd的默认学习率(为0.01,可能太高)。尝试使用1.e-3或更低版本。