我需要在每个时期打印输出数组(Y hat),我该怎么做? 这是我现有的带4个输出的conv-net代码,数据生成器,模型配置等。 我想为每次迭代打印输出数组。
img_rows = 150
img_cols = 150
epochs = 30
batch_size = 32
num_of_train_samples = 800
num_of_test_samples = 200
#Image Generator
train_datagen = ImageDataGenerator(rescale=1. / 255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(train_data_path,
target_size=(img_rows, img_cols),
batch_size=batch_size,
class_mode='categorical')
test_generator = test_datagen.flow_from_directory(test_data_path,
target_size=(img_rows, img_cols),
batch_size=batch_size,
class_mode='categorical')
validation_generator = test_datagen.flow_from_directory(val_data_path,
target_size=(img_rows, img_cols),
batch_size=batch_size,
class_mode='categorical')
# Build model
model = Sequential()
model.add(Convolution2D(32, (3, 3), input_shape=(img_rows, img_cols,
3), padding='valid'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(32, (3, 3), padding='valid'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(64, (3, 3), padding='valid'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(4))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
#Train
history=model.fit_generator(train_generator,
steps_per_epoch=num_of_train_samples //
batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=num_of_test_samples //
batch_size)