我在TensorFlow中训练一个标准的,简单的多层感知器神经网络,其中有三个隐藏层。我添加了一个文本进度条,以便我可以观察迭代时代的进度。我发现的是每次迭代的处理时间在前几个时期之后增加。这是一个示例屏幕截图,显示每次迭代的增加:
在这种情况下,前几次迭代大约需要1.05s / it,而100%则需要4.01s / it。
此处列出了相关代码:
# ------------------------- Build the TensorFlow Graph -------------------------
with tf.Graph().as_default():
(a bunch of statements for specifying the graph)
# --------------------------------- Training ----------------------------------
sess = tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
print "Start Training"
pbar = tqdm(total = training_epochs)
for epoch in range(training_epochs):
avg_cost = 0.0
batch_iter = 0
while batch_iter < batch_size:
train_features = []
train_labels = []
batch_segments = random.sample(train_segments, 20)
for segment in batch_segments:
train_features.append(segment[0])
train_labels.append(segment[1])
sess.run(optimizer, feed_dict={x: train_features, y_: train_labels})
line_out = "," + str(batch_iter) + "\n"
train_outfile.write(line_out)
line_out = ",," + str(sess.run(tf.reduce_mean(weights['h1']), feed_dict={x: train_features, y_: train_labels}))
line_out += "," + str(sess.run(tf.reduce_mean(weights['h2']), feed_dict={x: train_features, y_: train_labels}))
line_out += "," + str(sess.run(tf.reduce_mean(weights['h3']), feed_dict={x: train_features, y_: train_labels})) + "\n"
train_outfile.write(line_out)
avg_cost += sess.run(cost, feed_dict={x: train_features, y_: train_labels})/batch_size
batch_iter += 1
pbar.update(1) # Increment the progress bar by one
train_outfile.close()
print "Completed training"
在搜索stackoverflow时,我发现Processing time gets longer and longer after each iteration其他人也遇到了问题,每次迭代的时间都比上一次长。但是,我相信我的可能会有所不同,因为他们使用如下语句清楚地将操作添加到图表中:
distorted_image = tf.image.random_flip_left_right(image_tensor)
虽然我是TensorFlow的新手,但我不相信我犯了同样的错误,因为我的循环中唯一的东西是sess.run()调用。
非常感谢任何帮助。
答案 0 :(得分:8)
你拥有的三个地方:
sess.run(tf.reduce_mean(weights['h1']), ...)
每个节点在while循环的每次迭代中向图形添加一个新的tf.reduce_mean()
节点,这会增加开销。尝试在while循环之外创建它们:
with tf.Graph().as_default():
...
m1 = tf.reduce_mean(weights['h1'])
while batch_iter < batch_size:
...
line_out = ",," + str(sess.run(m1, feed_dict={x: train_features, y_: train_labels}))