如何使用tensoflow实现该NN架构师?

时间:2019-12-24 23:12:49

标签: machine-learning neural-network

我在这个领域是新手,也许这就是为什么我使事情变得混乱。我无法获得所需的结果,因为它显示的准确性非常低,这意味着我做错了。

enter image description here

import sklearn
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
import matplotlib.pyplot as plt
import sklearn.model_selection
from tensorflow.keras import layers
data= pd.read_csv("u.csv")
#print(data.head())
plt.plot(data)
plt.show()
import tensorflow
x=data.iloc[:,:3].values
y=data.iloc[:,-1].values
n_features = 1
n_steps = 3


x_train, x_test, y_train, y_test = sklearn.model_selection.train_test_split(x,y, test_size=0.1)
xtr=x_train
# create and fit the network
n_features = 1
x_train = x_train.reshape((x_train.shape[0], x_train.shape[1], n_features))
model = Sequential()

# expected input data shape: (batch_size, timesteps, data_dim)
model = tensorflow.keras.Sequential()

model.add(layers.Embedding(input_dim=3, output_dim=1))  # returns a sequence of vectors of dimension 
model.add(layers.SimpleRNN(2, return_sequences=True))  # returns a sequence of vectors of dimension 
model.add(layers.SimpleRNN(2))  # return a single vector of dimension 32
model.add(Dense(1, activation='softmax'))
model.compile(optimizer='adam', loss='mse')
model.fit(x_train, y_train)
x_test = x_test.reshape((x_test.shape[0], x_test.shape[1], n_features))
y_pred=model.predict(x_train)
#print(x_train.shape)
#print(y_train.shape)

print(model.layers[0].get_weights()[0]) # W - input weights
print(model.layers[0].get_weights()[1]) # U - recurrent weights
print(model.layers[0].get_weights()[2]) # b - output
m=model.layers[0].get_weights()[0]

1 个答案:

答案 0 :(得分:0)

如果要使用pytorch创建NN。 NN的类型很多,三个组成部分是:

FFN:

  1. 前馈神经网络。
  2. CNN:卷积神经网络。
  3. Rli:递归神经网络。 (LSTM是RNN的一种,您可以使用下面的RNN代码并对其进行更改以获取LSTM,如果您发现我将发布更改的困难,请告诉我)

让我们以FNN开头: FNN由三层组成:

  1. 输入层
  2. 隐藏层
  3. 读出层。

对于MNIST而言,每个输入层的形状都会发生变化,并且每个输入层都有自己的行为

  1. FNN:扁平28 * 28
  2. CNN:频道,28,28:主要用于图像
  3. RNN:每步输入28和总共28个时间步。 :对于时间序列数据类型[视频,文本,音频]

FNN的代码是:

( SELECT CITY, LENGTH(CITY) FROM STATION ORDER BY LENGTH(CITY)     , CITY
   FETCH FIRST 1 ROW ONLY )
UNION ALL
( SELECT CITY, LENGTH(CITY) FROM STATION ORDER BY LENGTH(CITY) DESC, CITY
   FETCH FIRST 1 ROW ONLY )

RNN的代码是:

import torch
import torch.nn as nn
from torch.autograd import Variable
import torchvision.datasets as dsets
import torchvision.transforms as transforms

train_dataset = dsets.MNIST(root="./data",
                            train=True,
                            transform=transforms.ToTensor(),
                            download=True
                            )

test_dataset = dsets.MNIST(root="./data",
                           train=False,
                           transform=transforms.ToTensor())


batch_size=100
n_iters = 3000
n_epochs = n_iters / (len(train_dataset)/batch_size)
n_epochs = int(n_epochs)

train_dataloader = torch.utils.data.DataLoader(dataset=train_dataset,
                                               batch_size=batch_size,
                                               shuffle=True)

test_dataloader = torch.utils.data.DataLoader(dataset=test_dataset,
                                              batch_size=batch_size,
                                              shuffle=False)

class FeedforwardNNModelSIG(nn.Module):
  def __init__(self,input_dim,hidden_dim,output_dim):
      super().__init__()

      #Linear Layar
      self.fc1=nn.Linear(input_dim,hidden_dim)

      #Non Linear Layaer 
      self.sigmoid=nn.Sigmoid()

      #Linear Layar(readout layer)
      self.fc2=nn.Linear(hidden_dim,output_dim)

  def forward(self,x):
      # Linear
      out = self.fc1(x)
      # Non-Linear
      out = self.sigmoid(out)
      # Linear (readout layer)
      out = self.fc2(out)

      return out

input_dim=28*28
hidden_dim=50
output_dim=10
model = FeedforwardNNModelSIG(input_dim,hidden_dim,output_dim)

criterion = nn.CrossEntropyLoss()

learning_rate = 0.1
optimizer = torch.optim.SGD(model.parameters(),lr=learning_rate)

iter=0
for epoch in range(n_epochs):
  for i,(images, labels) in enumerate(train_dataloader):

      ##1 Convert inputs/labels to Variable
      images = Variable(images.view(-1,28*28))
      labels = Variable(labels)

      ##2 Clear the gradients 
      optimizer.zero_grad()

      ##3 Get output given input
      outputs = model(images)

      ##4 Get Loss
      loss = criterion(outputs,labels)

      ##5 Get gradients wrt parameters
      loss.backward()

      ##6 Update paramters using Gradients
      optimizer.step()

      ##7 Repeat

      iter +=1
      if iter % 500 == 0 :
        correct = 0.
        total = 0.
      # Iter thorough test dataset
        for images,labels in test_dataloader:
          images = Variable(images.view(-1,28*28))
          labels = Variable(labels)

          outputs = model(images)
          # Get the max value of the prediction
          _,predicted=torch.max(outputs.data,1)
          # number of labels 
          total += labels.size(0)
          # Total correct predictions
          correct += (predicted==labels).sum()

        accuracy = 100*(correct/total)
        print("Iteration: {} , Loss:{} , Accuracy:{}".format(iter,loss.data,accuracy))