在Tensorflow 2.0中的自定义训练循环中应用回调

时间:2019-12-21 18:42:14

标签: python keras tensorflow2.0 gradienttape

我正在使用Tensorflow DCGAN实施指南中提供的代码编写自定义训练循环。我想在训练循环中添加回调。在Keras中,我知道我们将它们作为“ fit”方法的参数传递,但是找不到有关如何在自定义训练循环中使用这些回调的资源。我正在从Tensorflow文档中添加自定义训练循环的代码:

# Notice the use of `tf.function`
# This annotation causes the function to be "compiled".
@tf.function
def train_step(images):
    noise = tf.random.normal([BATCH_SIZE, noise_dim])

    with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
      generated_images = generator(noise, training=True)

      real_output = discriminator(images, training=True)
      fake_output = discriminator(generated_images, training=True)

      gen_loss = generator_loss(fake_output)
      disc_loss = discriminator_loss(real_output, fake_output)

    gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
    gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)

    generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
    discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))

def train(dataset, epochs):
  for epoch in range(epochs):
    start = time.time()

    for image_batch in dataset:
      train_step(image_batch)

    # Produce images for the GIF as we go
    display.clear_output(wait=True)
    generate_and_save_images(generator,
                             epoch + 1,
                             seed)

    # Save the model every 15 epochs
    if (epoch + 1) % 15 == 0:
      checkpoint.save(file_prefix = checkpoint_prefix)

    print ('Time for epoch {} is {} sec'.format(epoch + 1, time.time()-start))

  # Generate after the final epoch
  display.clear_output(wait=True)
  generate_and_save_images(generator,
                           epochs,
                           seed)

6 个答案:

答案 0 :(得分:2)

我认为您需要手动实现回调的功能。它应该不会太困难。例如,您可以让“ train_step”函数返回损失,然后实现回调的功能,例如尽早停止“ train”函数。对于诸如学习率计划之类的回调,函数tf.keras.backend.set_value(generator_optimizer.lr,new_lr)将派上用场。因此,回调的功能将在您的“火车”功能中实现。

答案 1 :(得分:2)

最简单的方法是检查损失在预期期间是否发生了变化,如果没有,则中断或操纵培训过程。 这是您可以实现自定义提早停止回调的一种方法:

def Callback_EarlyStopping(LossList, min_delta=0.1, patience=20):
    #No early stopping for 2*patience epochs 
    if len(LossList)//patience < 2 :
        return False
    #Mean loss for last patience epochs and second-last patience epochs
    mean_previous = np.mean(LossList[::-1][patience:2*patience]) #second-last
    mean_recent = np.mean(LossList[::-1][:patience]) #last
    #you can use relative or absolute change
    delta_abs = np.abs(mean_recent - mean_previous) #abs change
    delta_abs = np.abs(delta_abs / mean_previous)  # relative change
    if delta_abs < min_delta :
        print("*CB_ES* Loss didn't change much from last %d epochs"%(patience))
        print("*CB_ES* Percent change in loss value:", delta_abs*1e2)
        return True
    else:
        return False

Callback_EarlyStopping会在每个时期检查您的指标/损失,如果相对变化小于通过在每个True时期之后计算损失的移动平均值所期望的相对变化,则返回patience。然后,您可以捕获此True信号并中断训练循环。要完全回答您的问题,可以在示例训练循环中将其用作:

gen_loss_seq = []
for epoch in range(epochs):
  #in your example, make sure your train_step returns gen_loss
  gen_loss = train_step(dataset) 
  #ideally, you can have a validation_step and get gen_valid_loss
  gen_loss_seq.append(gen_loss)  
  #check every 20 epochs and stop if gen_valid_loss doesn't change by 10%
  stopEarly = Callback_EarlyStopping(gen_loss_seq, min_delta=0.1, patience=20)
  if stopEarly:
    print("Callback_EarlyStopping signal received at epoch= %d/%d"%(epoch,epochs))
    print("Terminating training ")
    break
       

当然,您可以通过多种方式来增加复杂性,例如,您要跟踪哪些损失或指标,您对特定时期的损失的兴趣或损失的移动平均值,您对相对或绝对变化的兴趣您可以参考tf.keras.callbacks.EarlyStopping here的Tensorflow 2.x实现,该实现通常在流行的tf.keras.Model.fit方法中使用。

答案 2 :(得分:2)

aapa3e8 的答案是正确的,但我在下面提供了一个 Callback_EarlyStopping 的实现,它更类似于 tf.keras.callbacks.EarlyStopping

def Callback_EarlyStopping(MetricList, min_delta=0.1, patience=20, mode='min'):
    #No early stopping for the first patience epochs 
    if len(MetricList) <= patience:
        return False
    
    min_delta = abs(min_delta)
    if mode == 'min':
      min_delta *= -1
    else:
      min_delta *= 1
    
    #last patience epochs 
    last_patience_epochs = [x + min_delta for x in MetricList[::-1][1:patience + 1]]
    current_metric = MetricList[::-1][0]
    
    if mode == 'min':
        if current_metric >= max(last_patience_epochs):
            print(f'Metric did not decrease for the last {patience} epochs.')
            return True
        else:
            return False
    else:
        if current_metric <= min(last_patience_epochs):
            print(f'Metric did not increase for the last {patience} epochs.')
            return True
        else:
            return False

答案 3 :(得分:2)

我自己也遇到过这个问题:(1) 我想使用自定义训练循环; (2) 我不想失去 Keras 在回调方面给我的花里胡哨; (3) 我不想自己重新实现它们。 Tensorflow 的设计理念是允许开发人员逐渐选择加入其更底层的 API,我认为这是他们文档中的一个明显漏洞。以下对我有用,但可以通过逆向工程改进 tf.keras.Model,以便像 Keras 一样正确调用这些事件。

诀窍是使用 tf.keras.callbacks.CallbackList,然后从您的自定义训练循环中手动触发其生命周期事件。此示例使用 tqdm 来提供有吸引力的进度条,但 CallbackList 有一个 progress_bar 初始化参数,可以让您使用默认值。 training_modeltf.keras.Model 的典型实例。

from tqdm.notebook import tqdm, trange

# Populate with typical keras callbacks
_callbacks = []

callbacks = tf.keras.callbacks.CallbackList(
    _callbacks, add_history=True, model=training_model)

logs = {}
callbacks.on_train_begin(logs=logs)

# Presentation
epochs = trange(
    max_epochs,
    desc="Epoch",
    unit="Epoch",
    postfix="loss = {loss:.4f}, accuracy = {accuracy:.4f}")
epochs.set_postfix(loss=0, accuracy=0)

for epoch in epochs:
    callbacks.on_epoch_begin(epoch, logs=logs)

    # I like to formulate new batches each epoch
    training_batches = batches(x, Y)
    test_batches = batches(x, Y)

    # Presentation
    enumerated_batches = tqdm(
        enumerate(training_batches),
        desc="Batch",
        unit="batch",
        postfix="loss = {loss:.4f}, accuracy = {accuracy:.4f}",
        position=1,
        leave=False)

    for (batch, (x, y)) in enumerated_batches:
        training_model.reset_states()
        
        callbacks.on_batch_begin(batch, logs=logs)
        callbacks.on_train_batch_begin(batch, logs=logs)
        
        logs = training_model.train_on_batch(x=x, y=Y, return_dict=True)

        callbacks.on_train_batch_end(batch, logs=logs)
        callbacks.on_batch_end(batch, logs=logs)

        # Presentation
        enumerated_batches.set_postfix(
            loss=float(logs["loss"]),
            accuracy=float(logs["accuracy"]))

    for (batch, (x, y)) in enumerate(test_batches):
        training_model.reset_states()

        callbacks.on_batch_begin(batch, logs=logs)
        callbacks.on_test_batch_begin(batch, logs=logs)

        logs = training_model.test_on_batch(x=x, y=Y, return_dict=True)

        callbacks.on_test_batch_end(batch, logs=logs)
        callbacks.on_batch_end(batch, logs=logs)

    # Presentation
    epochs.set_postfix(
        loss=float(logs["loss"]),
        accuracy=float(logs["accuracy"]))

    callbacks.on_epoch_end(epoch, logs=logs)

    # NOTE: This is a decent place to check on your early stopping
    # callback.
    # Example: use training_model.stop_training to check for early stopping


callbacks.on_train_end(logs=logs)

# Fetch the history object we normally get from keras.fit
history_object = None
for cb in callbacks:
    if isinstance(cb, tf.keras.callbacks.History):
        history_object = cb
assert history_object is not None

答案 4 :(得分:0)

这没有道理。

没有任何一种与解释log lossmse相同的解释判别器/发电机损耗的有意义的方法。两种碟片/发电机损失都与另一种有关,因此没有明确的停止标准。理想情况下,损失将达到Nash Equilibrium,但这实际上是不可能的。这不是堆栈溢出的讨论,而是https://stats.stackexchange.com的讨论。

答案 5 :(得分:0)

自定义训练循环只是普通的Python循环,因此只要满足某些条件,就可以使用if语句来中断循环。例如:

if len(loss_history) > patience:
    if loss_history.popleft()*delta < min(loss_history):
        print(f'\nEarly stopping. No improvement of more than {delta:.5%} in '
              f'validation loss in the last {patience} epochs.')
        break

如果在过去的delta%时期,patience的损失没有改善,则循环将中断。在这里,我使用的是collections.deque,它可以很容易地用作滚动列表,仅将最后patience个时期保存在内存中。

这是一个完整的实现,带有Tensorflow文档中的文档示例:

patience = 3
delta = 0.001

loss_history = deque(maxlen=patience + 1)

for epoch in range(1, 25 + 1):
    train_loss = tf.metrics.Mean()
    train_acc = tf.metrics.CategoricalAccuracy()
    test_loss = tf.metrics.Mean()
    test_acc = tf.metrics.CategoricalAccuracy()

    for x, y in train:
        loss_value, grads = get_grad(model, x, y)
        optimizer.apply_gradients(zip(grads, model.trainable_variables))
        train_loss.update_state(loss_value)
        train_acc.update_state(y, model(x, training=True))

    for x, y in test:
        loss_value, _ = get_grad(model, x, y)
        test_loss.update_state(loss_value)
        test_acc.update_state(y, model(x, training=False))

    print(verbose.format(epoch,
                         train_loss.result(),
                         test_loss.result(),
                         train_acc.result(),
                         test_acc.result()))

    loss_history.append(test_loss.result())

    if len(loss_history) > patience:
        if loss_history.popleft()*delta < min(loss_history):
            print(f'\nEarly stopping. No improvement of more than {delta:.5%} in '
                  f'validation loss in the last {patience} epochs.')
            break
Epoch  1 Loss: 0.191 TLoss: 0.282 Acc: 68.920% TAcc: 89.200%
Epoch  2 Loss: 0.157 TLoss: 0.297 Acc: 70.880% TAcc: 90.000%
Epoch  3 Loss: 0.133 TLoss: 0.318 Acc: 71.560% TAcc: 90.800%
Epoch  4 Loss: 0.117 TLoss: 0.299 Acc: 71.960% TAcc: 90.800%

Early stopping. No improvement of more than 0.10000% in validation loss in the last 3 epochs.