我正在训练CNN进行音频分类任务,并且我正在使用带有自定义训练循环的TensorFlow 2.0 RC(如其官方网站的this guide中所述)。与通常的Keras model.fit
类似,我觉得拥有一个不错的进度条非常方便。
这是我的训练代码的概述(我使用的是4个GPU,并采用镜像分配策略):
strategy = distribute.MirroredStrategy()
distr_train_dataset = strategy.experimental_distribute_dataset(train_dataset)
if valid_dataset:
distr_valid_dataset = strategy.experimental_distribute_dataset(valid_dataset)
with strategy.scope():
model = build_model() # build the model
optimizer = # define optimizer
train_loss = # define training loss
train_metrics_1 = # AUC-ROC
train_metrics_2 = # AUC-PR
valid_metrics_1 = # AUC-ROC for validation
valid_metrics_2 = # AUC-PR for validation
# rescale loss
def compute_loss(labels, predictions):
per_example_loss = train_loss(labels, predictions)
return per_example_loss/config.batch_size
def train_step(batch):
audio_batch, label_batch = batch
with tf.GradientTape() as tape:
logits = model(audio_batch)
loss = compute_loss(label_batch, logits)
variables = model.trainable_variables
grads = tape.gradient(loss, variables)
optimizer.apply_gradients(zip(grads, variables))
train_metrics_1.update_state(label_batch, logits)
train_metrics_2.update_state(label_batch, logits)
train_mean_loss.update_state(loss)
return loss
def valid_step(batch):
audio_batch, label_batch = batch
logits = model(audio_batch, training=False)
loss = compute_loss(label_batch, logits)
val_metrics_1.update_state(label_batch, logits)
val_metrics_2.update_state(label_batch, logits)
val_loss.update_state(loss)
return loss
@tf.function
def distributed_train(batch):
num_batches = 0
for batch in distr_train_dataset:
num_batches += 1
strategy.experimental_run_v2(train_step, args=(batch, ))
# print progress here
tf.print('Step', num_batches, '; Loss', train_mean_loss.result(), '; ROC_AUC', train_metrics_1.result(), '; PR_AUC', train_metrics_2.result())
gc.collect()
@tf.function
def distributed_valid(batch):
for batch in distr_valid_dataset:
strategy.experimental_run_v2(valid_step, args=(batch, ))
gc.collect()
for epoch in range(epochs):
distributed_train(distr_train_dataset)
gc.collect()
train_metrics_1.reset_states()
train_metrics_2.reset_states()
train_mean_loss.reset_states()
if valid_dataset:
distributed_valid(distr_valid_dataset)
gc.collect()
val_metrics_1.reset_states()
val_metrics_2.reset_states()
val_loss.reset_states()
此处train_dataset
和valid_dataset
是使用常规tf.data输入管道生成的两个tf.data.TFRecordDataset。
TensorFlow提供了一个非常不错的tf.keras.utils.Progbar(确实是使用model.fit
进行培训时看到的内容)。我已经看过它的source code,它依赖于numpy,所以我不能用它代替tf.print()
语句(在图形模式下执行)。
如何在自定义训练循环中实现类似的进度条(训练功能以图形方式运行)?
model.fit
首先如何显示进度栏?
答案 0 :(得分:4)
可以使用以下代码生成自定义训练循环的进度条:
from tensorflow.keras.utils import Progbar
import time
import numpy as np
metrics_names = ['acc','pr']
num_epochs = 5
num_training_samples = 100
batch_size = 10
for i in range(num_epochs):
print("\nepoch {}/{}".format(i+1,num_epochs))
pb_i = Progbar(num_training_samples, stateful_metrics=metrics_names)
for j in range(num_training_samples//batch_size):
time.sleep(0.3)
values=[('acc',np.random.random(1)), ('pr',np.random.random(1))]
pb_i.add(batch_size, values=values)
输出:
时代1/5
100/100 [=============================]-3s 30ms / step-acc:0.2169-pr: 0.9011
时代2/5
100/100 [==============================]-3s 30ms / step-acc:0.7815-pr: 0.4900
时代3/5
100/100 [==============================]-3s 30ms / step-acc:0.8003-pr: 0.9292
时代4/5
100/100 [==============================]-3s 30ms / step-acc:0.8280-pr: 0.9113
时代5/5
100/100 [==============================]-3s 30ms / step-acc:0.8497-pr: 0.1929
答案 1 :(得分:2)
@Shubham Malaviya的答案很完美。
我只想在与tf.data.Dataset
进行交互时进一步扩展它。此代码也基于此answer。
import tensorflow as tf
import numpy as np
import time
# From https://www.tensorflow.org/guide/data#reading_input_data
(images_train, labels_train), (images_test, labels_test) = tf.keras.datasets.fashion_mnist.load_data()
images_train = images_train/255
images_test = images_test/255
dataset_train = tf.data.Dataset.from_tensor_slices((images_train, labels_train))
dataset_test = tf.data.Dataset.from_tensor_slices((images_test, labels_test))
# From @Shubham Malaviya https://stackoverflow.com/a/60094207/8682939
metrics_names = ['train_loss','val_loss']
num_epochs = 2
num_training_samples = images_train.shape[0]
batch_size = 10
# Loop on each epoch
for epoch in range(num_epochs):
print("\nepoch {}/{}".format(epoch+1,num_epochs))
progBar = tf.keras.utils.Progbar(num_training_samples, stateful_metrics=metrics_names)
# Loop on each batch of train dataset
for idX, (batch_x, batch_y) in enumerate(dataset_train.batch(batch_size)):
# Train the model
train_loss = np.random.random(1)
values=[('train_loss',train_loss)]
progBar.update(idX*batch_size, values=values)
# Loop on each batch of test dataset for validation
for batch_x, batch_y in dataset_test.batch(batch_size):
# Foward image through the network
# -----
# Calc the loss
val_loss = np.random.random(1)
# Update progBar with val_loss
values=[('train_loss',train_loss),('val_loss',val_loss)]
progBar.update(num_training_samples, values=values, finalize=True)
输出:
epoch 1/2 60000/60000 [==============================] - 1s 22us/step
- train_loss: 0.7019 - val_loss: 0.0658
epoch 2/2 60000/60000 [==============================] - 1s 21us/step
- train_loss: 0.5561 - val_loss: 0.0324
答案 2 :(得分:0)
如何在自定义训练循环中实现类似的进度条(训练功能以图形方式运行)?
为什么不更改代码的结构,以便将单个RSpec.describe AdminLogData::CsvAdminLogGenerator do
subject(:csv_file) { described_class.new(start_date, end_date).call }
let(:start_date) { 3.months.ago }
let(:end_date) { 2.months.ago }
let(:admin_log_data) { FactoryBot.create(:admin_log_data, created_at: 3.months.ago) }
before { admin_log_data }
it 'creates CSV file with proper value' do
expect(csv_file.to_a[1]).to match_array(CSV.generate_line([
admin_log_data.created_at
admin_log_data.action_type
admin_log_data.admin_email
admin_log_data.new_data
]))
end
end
调用封装在装饰有strategy.experimental_run_v2
的函数中,并让它们返回要显示的指标,然后在非装饰的tf.function
循环并使用for
?
tf.keras.utils.Progbar
首先如何显示进度栏?
在第2版中,model.fit
通过使用model.fit
对象显示进度条,该对象封装了TrainingContext
以及其他指定的回调,这些回调由{{1} },Progbar
等处理日志的方法。老实说,我不太确定如何在自定义训练循环中实现类似的机制,但是可能值得调查默认来源,其来源是here。