拉盖尔获得多根的方法(Matlab)

时间:2019-12-20 00:23:53

标签: matlab

我必须使用Laguerre的方法编写一段代码,以找到poly的实根和复杂根:

  

P = X ^ 5-5 * X ^ 4-6 * X ^ 3 + 6 * X ^ 2-3 * X + 1

我毫不怀疑。我在matlab中执行了该算法,但是5个根中有3个是相同的,我认为这是不正确的。

syms X                     %Declearing x as a variabl
P=X^5-5*X^4-6*X^3+6*X^2-3*X+1;    %Equation we interest to solve
n=5;                        % The eq. order
Pd1 = diff(P,X,1);          % first differitial of f
Pd2 = diff(P,X,2);          %second differitial of f
err=0.00001;                  %Answear tollerance

N=100;                      %Max. # of Iterations
x(1)=1e-3;                  % Initial Value
for k=1:N
    G=double(vpa(subs(Pd1,X,x(k))/subs(P,X,x(k))));
    H=G^2 - double(subs(Pd2,X,x(k))) /subs(P,X,x(k));
    D1= (G+sqrt((n-1)*(n*H-G^2)));
    D2= (G-sqrt((n-1)*(n*H-G^2)));
    D = max(D1,D2);
    a=n/D;
    x(k+1)=x(k)-a   
    Err(k) = abs(x(k+1)-x(k));
    if Err(k) <=err
        break
    end
end

输出(多项式的根):

  

x =

     

0.0010 + 0.0000i 0.1434 + 0.4661i 0.1474 + 0.4345i 0.1474 + 0.4345i 0.1474 + 0.4345i

2 个答案:

答案 0 :(得分:1)

您实际看到的是循环中出现的所有值let key = { "ID": "1", "NAME": "KEN", "DEPT1": "CSE", "DEPT2": "IT", "DEPT3": "NA", "EMAIL": "E@T.com" } let output = [] const findKey = (searchKey) => { Object.keys(key).forEach(key1 => { key[key1] === searchKey ? output.push({ [key1]: key[key1] }) : null }) } findKey("CSE") console.log(output)。最后一个x(k)是此循环的最终结果-根的近似值位于给定的公差阈值内。代码

0.1474 + 0.4345i

结果

syms X                                                  %Declaring x as a variable
P = X^5 - 5 * X^4 - 6 * X^3 + 6 * X^2 - 3 * X + 1;      %Polynomial
n=5;                                                    %Degree of the polynomial
Pd1 = diff(P,X,1);                                      %First derivative of P
Pd2 = diff(P,X,2);                                      %Second derivative of P
err = 0.00001;                                          %Answer tolerance

N = 100;                                                  %Maximal number of iterations
x(1) = 0;                                               %Initial value
for k = 1:N
    G = double(vpa(subs(Pd1,X,x(k)) / subs(P,X,x(k))));
    H = G^2 - double(subs(Pd2,X,x(k))) / subs(P,X,x(k));
    D1 = (G + sqrt((n-1) * (n * H-G^2)));
    D2 = (G - sqrt((n-1) * (n * H-G^2)));
    D = max(D1,D2);
    a = n/D;
    x(k+1) = x(k) - a;   
    Err(k) = abs(x(k+1)-x(k));
    if Err(k) <=err
        fprintf('Initial value %f, result %f%+fi', x(1), real(x(k)), imag(x(k)))
        break
    end
end

如果要获得其他根,则必须使用其他初始值。例如,一个可以获得

Initial value -2.000000, result -1.649100+0.000000i

这些都是多项式的零。

找到另一个根后,用于计算下一个根的一种方法是:除以相应的线性因子,然后将循环用于生成的新多项式。请注意,这通常不太容易处理,因为舍入误差可能会对结果产生很大的影响。

答案 1 :(得分:0)

使用deconv函数可以实现除数除法。

其他要点:

  • 分母候选者是复数,不建议使用简单的max,它仅对实际输入具有有意义的结果。目的是使a的两个变体中的较小者,以便必须寻找具有较大绝对值的D
  • double转换没有意义,因为根本没有转换为single类型。
  • 如果您不执行任何操作,则创建数组是没有意义的,尤其是对于Err而言。
  • 不需要慢速的符号运算,因为有直接在系数数组上运行的函数,例如polyvalpolyderdeconv
  • 在某一点上,人们无法期望根近似处的残差多项式值会大大降低。可以将其估计为double类型的机器常数乘以多项式值,在该多项式中所有系数和评估点都被其绝对值代替。测试和中断主要是为了避免被零或接近零的除法。
  • 对于实多项式,我们知道根的复共轭也是根。因此,用它初始化下一次迭代。

实施所有这些,我得到的日志

   0.0010000   0.9970060
x( 1) = 0.143349512707684+0.466072958423667i
x( 2) = 0.164462212064089+0.461399841949893i
x( 3) = 0.164466373475316+0.461405404094130i
root found x=0.164466373475316+0.461405404094130i with value P(x)=-2.22045e-16+9.4369e-16i
   1.6447e-01 - 4.6141e-01i   2.1094e-15 - 2.2204e-16i
root found x=0.164466373475316-0.461405404094130i with value P(x)=-2.22045e-16-9.4369e-16i
   0.16447 + 0.46141i   3.26094 - 3.44717i
x( 1) = 0.586360702193454+0.016571894375927i
x( 2) = 0.562204173408499+0.000003168181059i
x( 3) = 0.562204925474889+0.000000000000000i
root found x=0.562204925474889+0.000000000000000i with value P(x)=2.22045e-16-1.33554e-17i
   0.56220 - 0.00000i  -7.72035 + 0.00000i
x( 1) = 3.332994579372812-0.000000000000000i
root found x=3.332994579372812-0.000000000000000i with value P(x)=6.39488e-14-3.52284e-15i
   3.3330 + 0.0000i   5.5571 + 0.0000i
x( 1) = -2.224132251798332+0.000000000000000i
root found x=-2.224132251798332+0.000000000000000i with value P(x)=-3.33067e-14+1.6178e-15i

修改后的代码

P = [1, -2, -6, 6, -3, 1];
P0 = P;

deg=length(P)-1;           % The eq. degree
err=1e-10;                 %Answer tolerance

N=10;                      %Max. # of Iterations
x=1e-3;                    % Initial Value
for n=deg:-1:1
  dP = polyder(P);          % first derivative of P
  d2P = polyder(dP);        %second derivative of P
  disp([x, polyval(P,x)]);
  for k=1:N
    Px = polyval(P,x);
    dPx = polyval(dP,x);
    d2Px = polyval(d2P,x);
    if abs(Px) < 1e-14*polyval(abs(P),abs(x)) 
      break    % if value is zero in relative accuracy
    end
    G = dPx/Px;
    H=G^2 - d2Px / Px;
    D1= (G+sqrt((n-1)*(n*H-G^2)));
    D2= (G-sqrt((n-1)*(n*H-G^2)));
    D = D1;
    if abs(D2)>abs(D1) D=D2; end    % select the larger denominator
    a=n/D;
    x=x-a;
    fprintf('x(%2d) = %.15f%+.15fi\n',k,real(x),imag(x));
    if abs(a) < err
        break
    end
  end
  y = polyval(P0,x);   % check polynomial value of the original polynomial
  fprintf('root found x=%.15f%+.15fi with value P(x)=%.6g%+.6gi\n', real(x),imag(x),real(y),imag(y));
  [ P,R ] = deconv(P,[1,-x]);  % division with remainder
  x = conj(x);  % shortcut for conjugate pairs and clustered roots
end