我想知道是否有人知道基于numpy / scipy的python包在数值上整合了一个复杂的数值函数在一个细分的域(在我的特定情况下,一个由voronoi单元界定的2D域)?在过去,我使用了几个matlab文件交换包,但是如果可能的话,我希望保持在我当前的python工作流程中。 matlab例程是
http://www.mathworks.com/matlabcentral/fileexchange/9435-n-dimensional-simplex-quadrature
用于正交和网格生成:
http://www.mathworks.com/matlabcentral/fileexchange/25555-mesh2d-automatic-mesh-generation
有关网格生成和网格上数值积分的任何建议都将受到赞赏。
答案 0 :(得分:5)
这直接整合了三角形,而不是Voronoi区域,但应该接近。 (用不同的点数运行看?)它也适用于2d,3d ...
#!/usr/bin/env python
from __future__ import division
import numpy as np
__date__ = "2011-06-15 jun denis"
#...............................................................................
def sumtriangles( xy, z, triangles ):
""" integrate scattered data, given a triangulation
zsum, areasum = sumtriangles( xy, z, triangles )
In:
xy: npt, dim data points in 2d, 3d ...
z: npt data values at the points, scalars or vectors
triangles: ntri, dim+1 indices of triangles or simplexes, as from
http://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Delaunay.html
Out:
zsum: sum over all triangles of (area * z at midpoint).
Thus z at a point where 5 triangles meet
enters the sum 5 times, each weighted by that triangle's area / 3.
areasum: the area or volume of the convex hull of the data points.
For points over the unit square, zsum outside the hull is 0,
so zsum / areasum would compensate for that.
Or, make sure that the corners of the square or cube are in xy.
"""
# z concave or convex => under or overestimates
npt, dim = xy.shape
ntri, dim1 = triangles.shape
assert npt == len(z), "shape mismatch: xy %s z %s" % (xy.shape, z.shape)
assert dim1 == dim+1, "triangles ? %s" % triangles.shape
zsum = np.zeros( z[0].shape )
areasum = 0
dimfac = np.prod( np.arange( 1, dim+1 ))
for tri in triangles:
corners = xy[tri]
t = corners[1:] - corners[0]
if dim == 2:
area = abs( t[0,0] * t[1,1] - t[0,1] * t[1,0] ) / 2
else:
area = abs( np.linalg.det( t )) / dimfac # v slow
zsum += area * z[tri].mean(axis=0)
areasum += area
return (zsum, areasum)
#...............................................................................
if __name__ == "__main__":
import sys
from time import time
from scipy.spatial import Delaunay
npt = 500
dim = 2
seed = 1
exec( "\n".join( sys.argv[1:] )) # run this.py npt= dim= ...
np.set_printoptions( 2, threshold=100, edgeitems=5, suppress=True )
np.random.seed(seed)
points = np.random.uniform( size=(npt,dim) )
z = points # vec; zsum should be ~ constant
# z = points[:,0]
t0 = time()
tessellation = Delaunay( points )
t1 = time()
triangles = tessellation.vertices # ntri, dim+1
zsum, areasum = sumtriangles( points, z, triangles )
t2 = time()
print "%s: %.0f msec Delaunay, %.0f msec sum %d triangles: zsum %s areasum %.3g" % (
points.shape, (t1 - t0) * 1000, (t2 - t1) * 1000,
len(triangles), zsum, areasum )
# mac ppc, numpy 1.5.1 15jun:
# (500, 2): 25 msec Delaunay, 279 msec sum 983 triangles: zsum [ 0.48 0.48] areasum 0.969
# (500, 3): 111 msec Delaunay, 3135 msec sum 3046 triangles: zsum [ 0.45 0.45 0.44] areasum 0.892
答案 1 :(得分:1)
scipy.integrate.dblquad怎么样?它使用自适应求积法则让您放弃对积分网格的控制。不知道这对你的申请是加分还是减号。
答案 2 :(得分:1)
数值积分通常定义在三角形或矩形等简单元素上。也就是说,您可以将每个polgon分解为一系列三角形。运气好的话,你的多边形网格有一个三角形对偶,这将使整合更容易。
quadpy(我的一个项目)对许多领域进行数值整合,例如三角形:
import numpy
import quadpy
sol, error_estimate = quadpy.triangle.adaptive_integrate(
lambda x: numpy.exp(x[0]),
numpy.array([
[[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]],
[[1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0]],
[[0.0, 1.0], [0.0, 1.0], [0.0, 1.0], [0.0, 1.0], [0.0, 1.0]],
]),
1.0e-10
)
print(sol)
您还可以通过为三角形提供数百种方案之一来非自适应地进行整合。