我已经写了一个简单神经网络的最小示例,该神经网络适合给定功能(用于回归的多层感知器)。
在训练过程中,损失会按预期下降,并且模型可以正常工作。但是,精度始终保持恒定并等于0.0,我不明白为什么。我在这里想念什么?
我想有些技术细节会阻止准确性的更新?
可以查看培训过程和生成的模型in this link
非常感谢您提供的任何帮助! ;)
PS-这是重现此结果的最小示例:
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import gridspec
# Create TRAINING data
noise = 0.1
N=500
Xt = np.random.uniform(-np.pi, np.pi, size=(N,))
Yt = np.sin(Xt) + noise * np.random.uniform(-1,1,size=Xt.shape)
# Create VALIDATION data
Nv = int(0.1*N)
Xv = np.random.uniform(-np.pi, np.pi, size=(Nv,))
Yv = np.sin(Xv) + noise * np.random.uniform(-1,1,size=Xv.shape)
# Create model
model = Sequential()
model.add( Dense(10, activation='tanh',input_shape=(1,)) )
model.add( Dense(5, activation='tanh') )
model.add( Dense(1, activation=None) )
model.compile(optimizer='adam',
loss='mse',
metrics=['accuracy'])
# Fit & evaluate
history = model.fit(Xt, Yt, validation_data=(Xv,Yv),
epochs=100,
verbose=2)
results = model.evaluate(Xv, Yv,verbose=0)
print('\n\nEvaluating model, loss/acc:', results)
## PLOTS
fig = plt.figure()
gs = gridspec.GridSpec(2, 2)
ax1 = plt.subplot(gs[0,0]) # losses
ax2 = plt.subplot(gs[1,0], sharex=ax1) # accuracies
ax3 = plt.subplot(gs[:,1]) # data & model
# Plot learning curve
err = history.history['loss']
val_err = history.history['val_loss']
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
ax1.plot(err,label='loss')
ax1.plot(val_err,label='val_loss')
ax2.plot(acc,label='accuracy')
ax2.plot(val_acc,label='val_accuracy')
ax1.set_ylim(bottom=0)
ax2.set_ylim(bottom=-0.01)
ax1.legend()
ax2.legend()
# Plot test
# Generate "continous" data for pretty test
x = np.linspace(np.min(Xt),np.max(Xt),1000)
y = model.predict(x)
ax3.scatter(Xt, Yt, label='Training')
ax3.scatter(Xv, Yv, c='C2', label='Validation')
ax3.plot(x, y, 'C3-', lw=4, label='Model')
ax3.legend()
fig.tight_layout()
plt.show()
答案 0 :(得分:0)
正如Swier在评论中指出的那样,准确性是指分类。 不过,我认为某些点应该产生确切的目标值,这就是为什么我期望acc> 0。 无论如何,我将问题映射到仅整数问题,在这种情况下,准确性不为零。显然,它不是有用的指标,但至少(数学上)有意义。 谢谢!