keras MLP精度为零

时间:2018-05-23 06:24:32

标签: python machine-learning neural-network keras

以下是我的MLP模型,

layers = [10,20,30,40,50]
model = keras.models.Sequential()
#Stacking Layers
model.add(keras.layers.Dense(layers[0], input_dim = input_dim, activation='relu'))
#Defining the shape of input
for layer in layers[1:]:
    model.add(keras.layers.Dense(layer, activation='relu'))
    #Layer activation function
# Output layer
model.add(keras.layers.Dense(1, activation='sigmoid'))
#Pre-training
model.compile(loss = 'binary_crossentropy', optimizer = 'adam', metrics = ['accuracy'])
#Training
model.fit(train_set, test_set, validation_split = 0.10, epochs = 50, batch_size = 10, shuffle = True, verbose = 2)
# evaluate the network
loss, accuracy = model.evaluate(train_set, test_set)
print("\nLoss: %.2f, Accuracy: %.2f%%" % (loss, accuracy*100))
#predictions
predt = model.predict(final_test)
print(predt)

问题是,准确度始终为0,错误日志如图所示,

Epoch 48/50 - 0s - loss: 1.0578 - acc: 0.0000e+00 - val_loss: 0.4885 - val_acc: 0.0000e+00 
Epoch 49/50 - 0s - loss: 1.0578 - acc: 0.0000e+00 - val_loss: 0.4885 - val_acc: 0.0000e+00 
Epoch 50/50 - 0s - loss: 1.0578 - acc: 0.0000e+00 - val_loss: 0.4885 - val_acc: 0.0000e+00 
2422/2422 [==============================] - 0s 17us/step
  

损失:1.00,准确度:0.00%

如我所知,我已将学习信号从-1,1更改为0,1但是,以下是错误日志

Epoch 48/50 - 0s - loss: 8.5879 - acc: 0.4672 - val_loss: 8.2912 - val_acc: 0.4856 
Epoch 49/50 - 0s - loss: 8.5879 - acc: 0.4672 - val_loss: 8.2912 - val_acc: 0.4856 
Epoch 50/50 - 0s - loss: 8.5879 - acc: 0.4672 - val_loss: 8.2912 - val_acc: 0.4856 
2422/2422 [==============================] - 0s 19us/step

1 个答案:

答案 0 :(得分:0)

您的代码很难阅读。这不是编写Keras模型的推荐标准。试试这个,让我们知道你得到了什么。假设X是一个矩阵,其中行是实例,列是特征。 Y是标签

使用TensorFlow后端时,您需要添加一个频道作为最后一个维度。此外,标签应分成2个节点,以便更好地获得成功。与使用具有2个节点的概率输出相比,单个神经元映射通常不太成功。

n = 1000         # Number of instances
m = 4            # Number of features
num_classes = 2  # Number of output classes

... # Your code for loading the data

X = X.reshape(n, m,) 
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.33)

y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

构建模型。最后一层应使用sigmoid或softmax进行分类任务。尝试使用已显示的Adadelta优化器,通过更有效地遍历梯度并减少振荡来产生更好的结果。我们还将使用交叉熵作为我们的损失函数,这是分类任务的标准。二元交叉熵也很好。

尝试使用标准模型配置。越来越多的节点并没有多大意义。该模型应该看起来像一个棱镜,一小组输入特征,许多隐藏节点和一小组输出节点。您应该瞄准最少数量的隐藏层,使图层更加丰富,而不是添加图层。

input_shape = (m,)

model = Sequential()
model.add(Dense(32, activation='relu', input_shape=input_shape))
model.add(Dense(64, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))

model.compile(loss=keras.losses.categorical_crossentropy,
              optimizer=keras.optimizers.Adadelta(),
              metrics=['accuracy'])

您可以使用

获取模型摘要
model.summary()

训练你的模特

epochs = 100
batch_size = 128
# Fit the model weights.
history = model.fit(x_train, y_train,
          batch_size=batch_size,
          epochs=epochs,
          verbose=1,
          validation_data=(x_test, y_test))

查看培训期间发生的事情

plt.figure(figsize=(8,10))
plt.subplot(2,1,1)

# summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='lower right')

plt.subplot(2,1,2)
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper right')
plt.show()