我为二进制分类问题制作了一个3隐藏层MLP,并且遇到了我的成本函数问题。我目前正在运行一小部分数据,其形状是(由OHE引起的大量功能):
x_train shape: (150, 1929)
y_train shape: (150, 1)
x_test shape: (51, 1929)
y_test shape: (51, 1)
并且张力流图是:
# Parameters
learning_rate = 0.01
training_epochs = 500
iter_num = 500
batch_size = 200
display_step = training_epochs/10
# Network Parameters
n_hidden_1 = 1000 # 1st layer number of features
n_hidden_2 = 100 # 2nd layer number of features
n_hidden_3 = 8 # 3rd layer number of features
n_input = num_features # Number of input feature
n_classes = 1 # Number of classes to predict
# tf Graph input
x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32, [None, n_classes])
# Create model
def multilayer_perceptron(x, weights, biases):
# Hidden layer with sigmoid activation function
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
layer_1 = tf.nn.sigmoid(layer_1)
# Hidden layer with sigmoid activation function
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
layer_2 = tf.nn.sigmoid(layer_2)
#Hidden layer with sigmoid activation
layer_3 = tf.add(tf.matmul(layer_2, weights['h3']), biases['b3'])
layer_3 = tf.nn.sigmoid(layer_3)
# Output layer with softmax activation
out_layer = tf.matmul(layer_3, weights['out']) + biases['out']
out_layer = tf.nn.softmax(out_layer)
return out_layer
# Store layers weight & bias
weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3])),
'out': tf.Variable(tf.random_normal([n_hidden_3, n_classes]))
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1])),
'b2': tf.Variable(tf.random_normal([n_hidden_2])),
'b3': tf.Variable(tf.random_normal([n_hidden_3])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
# Construct model
pred = multilayer_perceptron(x, weights, biases)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred, labels=y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)
correct = tf.cast(tf.equal(pred, y), dtype=tf.float32)
accuracy = tf.reduce_mean(tf.cast(correct, "float"))
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
然后我用代码运行此图:
# Training loop
loss_vec = []
test_loss = []
train_acc = []
test_acc = []
predic = []
for epoch in range(iter_num):
rand_index = np.random.choice(len(train_X), size=batch_size)
rand_x = train_X[rand_index]
rand_y = train_y[rand_index]
temp_loss = sess.run(cost, feed_dict={x: rand_x,y: rand_y})
test_temp_loss = sess.run(cost, feed_dict={x: test_X, y: test_y})
temp_train_acc = sess.run(accuracy, feed_dict={x: train_X, y: train_y})
temp_test_acc = sess.run(accuracy, feed_dict={x: test_X, y: test_y})
temp_prediction = sess.run(pred, feed_dict={x: test_X, y: test_y})
predic.append(temp_prediction)
loss_vec.append(np.sqrt(temp_loss))
test_loss.append(np.sqrt(test_temp_loss))
train_acc.append(temp_train_acc)
test_acc.append(temp_test_acc)
# output
if (epoch + 1) % (iter_num/10) == 0:
print('epoch: {:4d} loss: {:5f} train_acc: {:5f} test_acc: {:5f}'.format(epoch + 1, temp_loss,
temp_train_acc, temp_test_acc))
然而,当我运行时,测试和训练精度保持不变,并且所有时期的损失都保持为零。
输出:
epoch: 50 loss: 0.000000 train_acc: 0.300000 test_acc: 0.235294
epoch: 100 loss: 0.000000 train_acc: 0.300000 test_acc: 0.235294
epoch: 150 loss: 0.000000 train_acc: 0.300000 test_acc: 0.235294
....
我无法弄清楚为什么我的损失为零?我的目标和预测似乎都具有相同的形状,并且绝对不相同。
答案 0 :(得分:1)
tf.nn.softmax_cross_entropy_with_logits_v2 已经为你计算softmax,你需要将无界logits传递给你的交叉熵函数,而不是softmax返回的概率分布。试试这个:
def multilayer_perceptron(x, weights, biases):
# ...
logits = tf.matmul(layer_3, weights['out']) + biases['out']
out_layer = tf.nn.softmax(logits)
return logits, out_layer
然后使用 logits 计算交叉熵和 out_layer 进行推理。
logits, pred = multilayer_perceptron(x, weights, biases)
cost = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=y))
优化器是计算渐变并将它们应用于变量的操作,此操作本质上是使您的网络“学习”的原因,您已声明它但我没有看到您在其中调用它环。这应该这样做:
_, temp_loss = sess.run([optimizer, cost], feed_dict={x: rand_x,y: rand_y})
你有二进制分类问题,我猜你的标签是0或1.你也有一个输出神经元,softmax会始终返回1.0。我建议的是制作2个输出神经元,这样softmax将计算2个类的概率分布。然后你的推论是该分布的argmax:
correct = tf.cast(tf.equal(tf.argmax(pred, 1), y), dtype=tf.float32)
accuracy = tf.reduce_mean(correct)
在这种情况下,您需要使用tf.nn.sparse_softmax_cross_entropy_with_logits()来计算交叉熵:
cost = tf.reduce_mean(
tf.nn.tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=y))
我会建议你查看this post,了解我所谈论的更多细节。