Tensorflow无法识别GPU(Ubuntu 18.04)

时间:2019-12-17 15:22:32

标签: tensorflow ubuntu

我使用的是NVIDIA GeForce 940M,并已按照指示正确安装here来安装Tensorflow GPU:

# Add NVIDIA package repositories
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-repo-ubuntu1804_10.0.130-1_amd64.deb
sudo dpkg -i cuda-repo-ubuntu1804_10.0.130-1_amd64.deb
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
sudo apt-get update
wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
sudo apt install ./nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
sudo apt-get update

# Install NVIDIA driver
sudo apt-get install --no-install-recommends nvidia-driver-418
# Reboot. Check that GPUs are visible using the command: nvidia-smi

# Install development and runtime libraries (~4GB)
sudo apt-get install --no-install-recommends \
    cuda-10-0 \
    libcudnn7=7.6.2.24-1+cuda10.0  \
    libcudnn7-dev=7.6.2.24-1+cuda10.0
# Install TensorRT. Requires that libcudnn7 is installed above.
sudo apt-get install -y --no-install-recommends libnvinfer5=5.1.5-1+cuda10.0 \
    libnvinfer-dev=5.1.5-1+cuda10.0

这是nvidia-smi的输出:

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 440.33.01    Driver Version: 440.33.01    CUDA Version: 10.2     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce 940M        On   | 00000000:01:00.0 Off |                  N/A |
| N/A   52C    P0    N/A /  N/A |    238MiB /  4046MiB |      6%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0      1027      G   /usr/lib/xorg/Xorg                            24MiB |
|    0      1184      G   /usr/bin/gnome-shell                          46MiB |
|    0      1388      G   /usr/lib/xorg/Xorg                           110MiB |
|    0      1555      G   /usr/bin/gnome-shell                          52MiB |
+-----------------------------------------------------------------------------+

nvcc -v

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2018 NVIDIA Corporation
Built on Sat_Aug_25_21:08:01_CDT_2018
Cuda compilation tools, release 10.0, V10.0.130

并且我同时使用conda和pip安装了tensorflow-gpu(两者均无效)。

的输出
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())

是:

[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 9340164754758349370
, name: "/device:XLA_CPU:0"
device_type: "XLA_CPU"
memory_limit: 17179869184
locality {
}
incarnation: 3967057350071782501
physical_device_desc: "device: XLA_CPU device"
]

如图所示,tensorflow无法识别GPU。我该怎么办?

0 个答案:

没有答案