使用更快的RCNN进行对象检测-由于TPU兼容的RCNC更快配置而出现错误

时间:2019-12-16 19:09:21

标签: tensorflow object-detection-api tpu

我正在尝试在colab TPU上运行更快的RCNN模型,但出现以下错误。

W1216 18:32:32.707980 140254956480384 error_handling.py:135] Reraising captured error
Traceback (most recent call last):
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/client/session.py", line 1365, in _do_call
    return fn(*args)
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/client/session.py", line 1350, in _run_fn
    target_list, run_metadata)
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/client/session.py", line 1443, in _call_tf_sessionrun
    run_metadata)
tensorflow.python.framework.errors_impl.InvalidArgumentError: From /job:tpu_worker/replica:0/task:0:
Compilation failure: Detected unsupported operations when trying to compile graph _functionalize_body_1[] on XLA_TPU_JIT: Where (No registered 'Where' OpKernel for XLA_TPU_JIT devices compatible with node {{node PruneOutsideWindow/Where}}
    .  Registered:  device='CPU'; T in [DT_INT64]
  device='CPU'; T in [DT_INT32]
  device='CPU'; T in [DT_UINT16]
  device='CPU'; T in [DT_INT16]
  device='CPU'; T in [DT_UINT8]
  device='CPU'; T in [DT_INT8]
  device='CPU'; T in [DT_HALF]
  device='CPU'; T in [DT_BFLOAT16]
  device='CPU'; T in [DT_FLOAT]
  device='CPU'; T in [DT_DOUBLE]
  device='CPU'; T in [DT_COMPLEX64]
  device='CPU'; T in [DT_COMPLEX128]
  device='CPU'; T in [DT_BOOL]
){{node PruneOutsideWindow/Where}}
     [[LoopCond]]
    TPU compilation failed

经过研究,我知道我应该具有用于​​Faster RCNN的TPU兼容配置。 我已经检查了here的支持,但是找不到更快的RCNN。请帮忙。

0 个答案:

没有答案