我正在尝试创建一个类,在其中可以放入一些参数以获得不同的分布。目前,我正在尝试使用以下代码中的多元正态分布:Error while creating object from templated class(请参阅JCooper的帖子)。
eigenmultivariatenormal.h:
#ifndef __EIGENMULTIVARIATENORMAL_HPP
#define __EIGENMULTIVARIATENORMAL_HPP
#include <Eigen/Dense>
#include <boost/random/mersenne_twister.hpp>
#include <boost/random/normal_distribution.hpp>
/*
We need a functor that can pretend it's const,
but to be a good random number generator
it needs mutable state. The standard Eigen function
Random() just calls rand(), which changes a global
variable.
*/
namespace Eigen {
namespace internal {
template<typename Scalar>
struct scalar_normal_dist_op
{
static boost::mt19937 rng; // The uniform pseudo-random algorithm
mutable boost::normal_distribution<Scalar> norm; // The gaussian combinator
EIGEN_EMPTY_STRUCT_CTOR(scalar_normal_dist_op)
template<typename Index>
inline const Scalar operator() (Index, Index = 0) const { return norm(rng); }
};
template<typename Scalar>
boost::mt19937 scalar_normal_dist_op<Scalar>::rng;
template<typename Scalar>
struct functor_traits<scalar_normal_dist_op<Scalar> >
{ enum { Cost = 50 * NumTraits<Scalar>::MulCost, PacketAccess = false, IsRepeatable = false }; };
} // end namespace internal
/**
Find the eigen-decomposition of the covariance matrix
and then store it for sampling from a multi-variate normal
*/
template<typename Scalar, int Size>
class EigenMultivariateNormal
{
Matrix<Scalar,Size,Size> _covar;
Matrix<Scalar,Size,Size> _transform;
Matrix< Scalar, Size, 1> _mean;
internal::scalar_normal_dist_op<Scalar> randN; // Gaussian functor
public:
EigenMultivariateNormal(const Matrix<Scalar,Size,1>& mean,const Matrix<Scalar,Size,Size>& covar)
{
setMean(mean);
setCovar(covar);
}
void setMean(const Matrix<Scalar,Size,1>& mean) { _mean = mean; }
void setCovar(const Matrix<Scalar,Size,Size>& covar)
{
_covar = covar;
// Assuming that we'll be using this repeatedly,
// compute the transformation matrix that will
// be applied to unit-variance independent normals
/*
Eigen::LDLT<Eigen::Matrix<Scalar,Size,Size> > cholSolver(_covar);
// We can only use the cholesky decomposition if
// the covariance matrix is symmetric, pos-definite.
// But a covariance matrix might be pos-semi-definite.
// In that case, we'll go to an EigenSolver
if (cholSolver.info()==Eigen::Success) {
// Use cholesky solver
_transform = cholSolver.matrixL();
} else {*/
SelfAdjointEigenSolver<Matrix<Scalar,Size,Size> > eigenSolver(_covar);
_transform = eigenSolver.eigenvectors()*eigenSolver.eigenvalues().cwiseMax(0).cwiseSqrt().asDiagonal();
/*}*/
}
/// Draw nn samples from the gaussian and return them
/// as columns in a Size by nn matrix
Matrix<Scalar,Size,-1> samples(int nn)
{
return (_transform * Matrix<Scalar,Size,-1>::NullaryExpr(Size,nn,randN)).colwise() + _mean;
}
}; // end class EigenMultivariateNormal
} // end namespace Eigen
#endif
Main.cpp:
#include <fstream>
#include "eigenmultivariatenormal.hpp"
#ifndef M_PI
#define M_PI REAL(3.1415926535897932384626433832795029)
#endif
/**
Take a pair of un-correlated variances.
Create a covariance matrix by correlating
them, sandwiching them in a rotation matrix.
*/
Eigen::Matrix2d genCovar(double v0,double v1,double theta)
{
Eigen::Matrix2d rot = Eigen::Rotation2Dd(theta).matrix();
return rot*Eigen::DiagonalMatrix<double,2,2>(v0,v1)*rot.transpose();
}
void main()
{
Eigen::Vector2d mean;
Eigen::Matrix2d covar;
mean << -1,0.5; // Set the mean
// Create a covariance matrix
// Much wider than it is tall
// and rotated clockwise by a bit
covar = genCovar(3,0.1,M_PI/5.0);
// Create a bivariate gaussian distribution of doubles.
// with our chosen mean and covariance
Eigen::EigenMultivariateNormal<double,2> normX(mean,covar);
// Generate some samples and write them out to file
// for plotting
std::cout << normX.samples(1000).transpose() << std::endl;
}
将结果打印到屏幕上效果很好,但是我需要能够将链接中的代码中的normX.samples(1)
转换为(我只想一次绘制一对值)到std::vector pair
或类似的名称(如数组)。我需要能够return
的值到调用该类的函数。
有人知道如何使用C ++使用多元正态分布吗?