我有一个问题。
如果我加载模型并将该模型用作大模型的基础,那么当我训练大模型时,该加载的模型是否受过训练?
例如...
baseModel = load_trained_model_from_checkpoint(
config_file=paths.config,
checkpoint_file=paths.checkpoint,
output_layer_num=1
)
inputFormat = baseModel.input + [baseMask]
maskedBase = keras.layers.dot([baseMask, baseModel.output], axes=1)
_POSBatchNormed = keras.layers.BatchNormalization()(maskedBase)
_POS1stConv = keras.layers.Conv1D(pos1FilterNum, pos1FilterSize,activation=tf.nn.relu)(_POSBatchNormed)
_POSGlobalMaxPooled = keras.layers.GlobalMaxPool1D()(_POS1stConv)
_POSDropOuted = keras.layers.Dropout(posDropOut)(_POSGlobalMaxPooled)
_POS_CNN = keras.layers.Dense(2 * classNum, activation=tf.nn.relu)(_POSDropOuted) # _POSDropOuted)
concatenated = keras.layers.concatenate([_CNN_FCN1, _POS_CNN]) # CNN_out])
deepDeepOut = keras.layers.Dense(1*classNum, activation=tf.nn.softmax)(concatenated)
deepDeepModel = keras.Model(inputFormat, deepDeepOut)
如果我训练deepDeepModel,是否会更改baseModel的参数?