我在所有图层中设置trainable=False
,通过Model
API实现,但我想验证这是否有效。 model.count_params()
会返回参数总数,但除了查看model.summary()
的最后几行之外,还有哪些方法可以获取可训练参数的总数?
答案 0 :(得分:15)
from keras import backend as K
trainable_count = int(
np.sum([K.count_params(p) for p in set(model.trainable_weights)]))
non_trainable_count = int(
np.sum([K.count_params(p) for p in set(model.non_trainable_weights)]))
print('Total params: {:,}'.format(trainable_count + non_trainable_count))
print('Trainable params: {:,}'.format(trainable_count))
print('Non-trainable params: {:,}'.format(non_trainable_count))
上述代码段可以在layer_utils.print_summary()
定义的末尾发现,summary()
正在调用。
答案 1 :(得分:0)
计数可训练参数的另一种方法是:
model.count_params()
答案 2 :(得分:0)
对于tensorflow.keras这对我有用。来自tensorflow github代码中layer_utils.py中的函数print_layer_summary_with_connections()
import numpy as np
from tensorflow.python.util import object_identity
def count_params(weights):
return int(sum(np.prod(p.shape.as_list())
for p in object_identity.ObjectIdentitySet(weights)))
if hasattr(model, '_collected_trainable_weights'):
trainable_count = count_params(model._collected_trainable_weights)
else:
trainable_count = count_params(model.trainable_weights)
print (trainable_count)
答案 3 :(得分:0)
对于 TensorFlow 2.0 :
import tensorflow.keras.backend as K
trainable_count = np.sum([K.count_params(w) for w in model.trainable_weights])
non_trainable_count = np.sum([K.count_params(w) for w in model.non_trainable_weights])
print('Total params: {:,}'.format(trainable_count + non_trainable_count))
print('Trainable params: {:,}'.format(trainable_count))
print('Non-trainable params: {:,}'.format(non_trainable_count))