给出以下两个数据框:
df1#从excel电子表格中读取
data1 = {'ID':['1','2'],
'Prod Family Desc':['Install','Maintenance'], 'Prod Family Code':['',''],
'Prod Type Desc':['Installation Serice','Maintenance Service'],'Prod Type Code':['',''],
}
df1 = pd.DataFrame(data1)
print(df1)
结果df1:
ID Prod Family Desc Prod Family Code Prod Type Desc Prod Type Code
0 1 Install Installation Serice
1 2 Maintenance Maintenance Service
df2#这是SQL查询的结果
data2 = {'Prod Class':['F','F','T','T'],
'Prod Desc':['Install','Maintenance','Installation Serice','Maintenance Service'],'Prod Code':['2525','2534','H123','H321']
}
df2 = pd.DataFrame(data2)
print(df2)
结果df2:
Prod Class Prod Desc Prod Code
0 F Install 2525
1 F Maintenance 2534
2 T Installation Serice H123
3 T Maintenance Service H321
从df2中分配产品系列代码和产品类型代码的 值 的最佳方法是什么到df1上的 列 产品系列代码和产品类型代码?
我正在这样做:
stype = df2.loc[df2['Prod Class'] == "T"]
family = df2.loc[df2['Prod Class'] == "F"]
for i, concaterow in df1.iterrows():
for j, styp in stype.iterrows():
if (concaterow['Prod Type Desc'] == styp['Prod Desc']):
df1.loc[i,'Prod Type Code'] = styp['Prod Code']
for j, scat in family.iterrows():
if (concaterow['Prod Family Desc'] == scat['Prod Desc']):
df1.loc[i,'Prod Family Code'] = scat['Prod Code']
print(df1)
结果如预期:
ID Prod Family Desc Prod Family Code Prod Type Desc Prod Type Code
0 1 Install 2525 Installation Serice H123
1 2 Maintenance 2534 Maintenance Service H321
对这种操作有任何Python方式吗?
**编辑@FatihAkici问题的答案。
@FatihAkici-因为df2是SQL查询的结果,所以我的预期结果是插入表中的最新值。因此,给定df2如下:
data2 = {'Prod Class':['F','F','F','T','T'], 'Prod Desc':['Install','Maintenance','Install','Installation Serice','Maintenance Service'],'Prod Code':['2525','2534','2536','H123','H321'] } ```
The expected result would be:
```ID Prod Family Desc Prod Family Code Prod Type Desc Prod Type Code
0 1 Install 2536 Installation Serice H123
1 2 Maintenance 2534 Maintenance Service H321
答案 0 :(得分:1)
您可以结合使用pd.DataFrame.assign
和pd.DataFrame.merge
:
df1.assign(**{
"Prod Family Code" : df1.merge(df2, left_on = "Prod Family Desc", right_on = "Prod Desc")["Prod Code"],
"Prod Type Code" : df1.merge(df2, left_on = "Prod Type Desc", right_on = "Prod Desc")["Prod Code"]})
在您的示例中,数据框df1包含2个空列
Prod Family Code
和Prod Type Code
,它们接收结果,但这不是此方法的要求
答案 1 :(得分:0)
我相信合并可以满足您的需求
df1.merge(df2, how='left', left_on=['Prod Family Desc'], right_on=['Prod Desc'])