我一直在尝试使用量子物理学来旋转球坐标。 我关注了以下帖子,了解如何执行此操作: https://stla.github.io/stlapblog/posts/RotationSphericalCoordinates.html
我对量子物理学有一些了解,但非常有限。 这是我在C#中想到的(抱歉缩进):
public Complex[,] rotationsMatrixX = new Complex[2, 2];
public Complex[,] rotationsMatrixY = new Complex[2, 2];
public Complex[,] rotationsMatrixZ = new Complex[2, 2];
public void rotatemethod(){
//Initialize the rotation matrices
double angle = 30;
//init X
rotationsMatrixX[0, 0] = new Complex(Math.Cos(angle / 2), 0);
rotationsMatrixX[0, 1] = new Complex(0, -Math.Sin(angle / 2));
rotationsMatrixX[1, 0] = new Complex(0, -Math.Sin(angle / 2));
rotationsMatrixX[1, 1] = new Complex(Math.Cos(angle / 2), 0);
//init Y
rotationsMatrixY[0, 0] = new Complex(Math.Cos(angle / 2), 0);
rotationsMatrixY[0, 1] = new Complex(-Math.Sin(angle / 2), 0);
rotationsMatrixY[1, 0] = new Complex(Math.Sin(angle / 2), 0);
rotationsMatrixY[1, 1] = new Complex(Math.Cos(angle / 2), 0);
//init Z
rotationsMatrixZ[0, 0] = new Complex(Math.Cos(angle / 2), -Math.Sin(angle / 2));
rotationsMatrixZ[0, 1] = new Complex(0, 0);
rotationsMatrixZ[1, 0] = new Complex(0, 0);
rotationsMatrixZ[1, 1] = new Complex(Math.Cos(angle / 2), Math.Sin(angle / 2));
double theta = 0.20943951023932; // 0 <= phi <= 2PI (for now just sample input)
double phi = 4.93055513688398; // 0 <= theta <= Pi (for now just sample input)
Console.WriteLine(" theta " + theta + " phi: " + phi);
//validation checks
if (theta < 0 || theta > Math.PI || phi < 0 || phi > 2 * Math.PI)
{
throw new ArgumentOutOfRangeException("phi and/or theta out of bounds");
}
//create the qubit
Complex topQbit = new Complex(Math.Cos(theta/2),0);
Complex bottomQbit = new Complex(Math.Cos(phi)*Math.Sin(theta/2), Math.Sin(phi)*Math.Sin(theta/2));
Complex[] quBit = new Complex[2];
quBit[0] = topQbit;
quBit[1] = bottomQbit;
Complex[] rotatedQbit = MultiplyComplexMatrix(quBit, rotationsMatrixY);
Complex[] rotatedQbit = MultiplyComplexMatrix(quBit, rotationsMatrixY);
//not sure if I need Atan2 here..
double rotatedTheta = 2 * Math.Atan(Complex.Abs(rotatedQbit[1]) / Complex.Abs(rotatedQbit[0]));
double rotatedPhi = rotatedQbit[1].Phase - rotatedQbit[0].Phase;
}
//Matrix Multiplication (with Complex numbers ONLY)
public Complex[] MultiplyComplexMatrix(Complex[] quBit, Complex[,] rotationMatrix)
{
//the rotated qbit
Complex[] rotatedQbit = new Complex[2];
//just some naming to make matrix multiplication more readable
Complex A = quBit[0];
Complex B = quBit[1];
Complex C = rotationMatrix[0, 0];
Complex D = rotationMatrix[0, 1];
Complex E = rotationMatrix[1, 0];
Complex F = rotationMatrix[1, 1];
rotatedQbit[0] = Complex.Multiply(A, B) + Complex.Multiply(B, E);
rotatedQbit[1] = Complex.Multiply(A, D) + Complex.Multiply(B, F);
return rotatedQbit;
}
我得到的结果(如下)没有任何意义。我会提供任何帮助!或实现此目的的替代方法。
样本输入的结果(在Y轴上旋转角度为30)
以C:232.5 G:124 ----------------
开头
theta 2.16420827247297 phi:4.05789051088682
rotatedTheta是:1.00298077136411,rotatedPhi是:3.60482234077516
单位:
theta 124 phi:232.5
rotatedTheta是:57.466565131939,rotatedPhi是:206.54110602020887
以C结尾:232.5 G:124 ----------------
以C开头:232.5 G:126 ----------------
θ2.19911485751286 phi:4.05789051088682
rotatedTheta是:1.01877652772437,rotatedPhi是:3.58185846568257
单位:
theta 126 phi:232.5
rotatedTheta是:58.3715953055989,rotatedPhi是:205.225372896816
以C结尾:232.5 G:126 ----------------
以C开头:232.5 G:128 ----------------
theta 2.23402144255274 phi:4.05789051088682
rotatedTheta是:1.03535071902231,rotatedPhi是:3.55952053311715
单位:
theta 128 phi:232.5
rotatedTheta是:59.3212265158133,rotatedPhi是:203.94550363777
以C结尾:232.5 G:128 ----------------
以C开头:232.5 G:130 ----------------
theta 2.26892802759263 phi:4.05789051088682
rotatedTheta是:1.05269513187015,rotatedPhi是:3.53779163501912
单位:
theta 130 phi:232.5
therotedTheta是:60.3149881701271,而rotatedPhi是:202.700529483282
以C结尾:232.5 G:130 ----------------