由于我是该领域的新手,所以我的项目面临很多错误。请帮助我解决这些问题。 预先感谢
请下载以下文件,然后在jupyter中运行 https://1drv.ms/u/s!AhSiPNeVlPcLhkXPp_9eMWc9b_mC?e=4foE3S
亲切的问候, 玛扎尔·布哈里()
答案 0 :(得分:0)
您应将inception_module
填充更改为padding="same"
。这样可以确保输出张量的高度和宽度与输入张量(32x32)相同。
def inception_module(x,chanDim):
# x is the input and chanDim is the dimension at which the convolution is applied
# channel dimension
conv_1x1_64 = conv_module(x, 64, 1, 1, (1, 1), chanDim,padding='same') # Convol x with 64 filters of 1X1
conv_1x1_96 = conv_module(x, 96, 1, 1, (1, 1), chanDim,padding="same") # convol x with 96 filters of 1X1
conv_1x1_16 = conv_module(x, 16, 1, 1, (1, 1), chanDim,padding="same") # convol x with 16 filters of 1X1
conv_3x3 = conv_module(conv_1x1_96, 128, 3, 3, (1, 1), chanDim,padding="same") # convol conv_1x1_96 with 128 3X3 filters
conv_5x5 = conv_module(conv_1x1_16, 32, 5, 5, (1, 1), chanDim,padding="same") # Convol the conv_1x1_16 with 32 5X5 filters
maxpool = MaxPooling2D((3, 3), strides=(1, 1), padding='same')(x) # Perform MaxPooling of 3X3, with strides=1
# padding='same'. Hint: use MaxPooling2D function
conv_1x1_32 = conv_module(maxpool, 32, 1, 1, (1, 1), chanDim,padding="same") # convol maxpool with 32 filters of 1X1
x = concatenate([conv_1x1_64, conv_3x3, conv_5x5,conv_1x1_32], axis=chanDim)
return x