使用plm估计模型之间的规范

时间:2019-11-18 14:14:30

标签: r panel-data plm economics

在plm的双向固定效应模型中是否可以包含一个时不变变量?

模型设置:

`m3 <- plm(habi5 ~ habi1 + habi3 + econ1 + gov1 + gov2 + gov3 + gov4 + soci1 + soci3 + soci4,
          data = merge3,
          index=c("Name", "Year"),
          model="within",
          effect = "twoways")`

“ habi1”是随时间变化的变量,其估计值未显示摘要


    > summary(m3)
    Twoways effects Within Model

    Call:
    plm(formula = habi5 ~ habi1 + habi3 + econ1 + gov1 + gov2 + gov3 + 
        gov4 + soci1 + soci3 + soci4, data = merge3, effect = "twoways", 
        model = "within", index = c("Name", "Year"))

    Balanced Panel: n = 103, T = 23, N = 2369

    Residuals:
           Min.     1st Qu.      Median     3rd Qu.        Max. 
    -0.19465878 -0.01498387 -0.00050656  0.01723336  0.20209069 

    Coefficients:
            Estimate Std. Error t-value      Pr(>|t|)    
    habi3  0.0440352  0.0273546  1.6098      0.107585    
    econ1 -0.1178293  0.0211307 -5.5762 0.00000002755 ***
    gov1  -0.0056041  0.0149073 -0.3759      0.707002    
    gov2  -0.0623383  0.0230207 -2.7079      0.006822 ** 
    gov3   0.0522537  0.0248725  2.1009      0.035765 *  
    gov4  -0.0726637  0.0306695 -2.3692      0.017909 *  
    soci1  0.0512043  0.0176959  2.8936      0.003846 ** 
    soci3  0.0653222  0.0140361  4.6539 0.00000344837 ***
    soci4 -0.0418018  0.0104464 -4.0015 0.00006498113 ***
    ---
    Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

    Total Sum of Squares:    3.3689
    Residual Sum of Squares: 3.1978
    R-Squared:      0.050797
    Adj. R-Squared: -0.0056884
    F-statistic: 13.2896 on 9 and 2235 DF, p-value: < 0.000000000000000222

在使用plm的当前模型规范中,是否可以估算此变量的影响?

编辑:

这是数据结构的一瞥:

> str(merge3)
'data.frame':   4416 obs. of  55 variables:
 $ ISO3       : Factor w/ 192 levels "AFG","AGO","ALB",..: 1 1 1 1 1 1 1 1 1 1 ...
 $ Name       : Factor w/ 192 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
 $ Year       : Factor w/ 23 levels "1995","1996",..: 1 2 3 4 5 6 7 8 9 10 ...
 $ Exposure   : num  0.481 0.481 0.481 0.481 0.481 ...
 $ Sensitivity: num  0.497 0.498 0.498 0.499 0.499 ...
 $ Capacity   : num  0.893 0.891 0.889 0.883 0.876 ...
 $ Economic   : num  0.138 0.138 0.138 0.138 0.138 ...
 $ Governance : num  0.139 0.139 0.143 0.147 0.142 ...
 $ Social     : num  0.297 0.297 0.297 0.297 0.297 ...
 $ food1      : num  0.702 0.702 0.702 0.702 0.702 ...
 $ food2      : num  0.439 0.439 0.439 0.439 0.439 ...
 $ food3      : num  0.779 0.779 0.779 0.779 0.779 ...
 $ food4      : num  0.845 0.844 0.843 0.842 0.841 ...
 $ food5      : num  0.988 0.988 0.988 0.988 0.988 ...
 $ food6      : num  0.7 0.7 0.7 0.647 0.595 ...
 $ water1     : num  0.442 0.442 0.442 0.442 0.442 ...
 $ water2     : num  0.179 0.179 0.179 0.179 0.179 ...
 $ water3     : num  0.436 0.436 0.436 0.436 0.436 ...
 $ water4     : num  0.287 0.287 0.287 0.287 0.287 ...
 $ water5     : num  0.986 0.986 0.986 0.986 0.986 ...
 $ water6     : num  0.975 0.953 0.932 0.909 0.888 ...
 $ heal1      : num  0.667 0.667 0.667 0.667 0.667 ...
 $ heal2      : num  1 1 1 1 1 1 1 1 1 1 ...
 $ heal3      : num  0.143 0.143 0.143 0.143 0.143 ...
 $ heal4      : num  0.646 0.646 0.646 0.646 0.646 ...
 $ heal5      : num  0.99 0.99 0.99 0.99 0.99 ...
 $ heal6      : num  0.819 0.813 0.807 0.802 0.796 ...
 $ ecos1      : num  0.659 0.659 0.659 0.659 0.659 ...
 $ ecos2      : num  0 0 0 0 0 0 0 0 0 0 ...
 $ ecos3      : num  NA NA NA NA NA NA NA NA NA NA ...
 $ ecos4      : num  0.2 0.2 0.2 0.2 0.2 ...
 $ ecos5      : num  0.885 0.885 0.885 0.885 0.885 ...
 $ ecos6      : num  0.835 0.84 0.845 0.846 0.846 ...
 $ habi1      : num  0.0727 0.0727 0.0727 0.0727 0.0727 ...
 $ habi2      : num  0.645 0.645 0.645 0.645 0.645 ...
 $ habi3      : num  0.216 0.217 0.218 0.219 0.22 ...
 $ habi4      : num  0.92 0.925 0.93 0.934 0.936 ...
 $ habi5      : num  1 1 1 1 1 1 1 1 1 1 ...
 $ habi6      : num  0.827 0.827 0.827 0.827 0.827 ...
 $ infr1      : num  NA NA NA NA NA NA NA NA NA NA ...
 $ infr2      : num  NA NA NA NA NA NA NA NA NA NA ...
 $ infr3      : num  NA NA NA NA NA NA NA NA NA NA ...
 $ infr4      : num  NA NA NA NA NA NA NA NA NA NA ...
 $ infr5      : num  1 1 1 1 0.998 ...
 $ infr6      : num  0.713 0.713 0.713 0.713 0.713 ...
 $ econ1      : num  0.138 0.138 0.138 0.138 0.138 ...
 $ gov1       : num  0.155 0.155 0.154 0.153 0.152 ...
 $ gov2       : num  0.132 0.132 0.145 0.157 0.144 ...
 $ gov3       : num  0.108 0.108 0.108 0.108 0.106 ...
 $ gov4       : num  0.16 0.16 0.165 0.17 0.166 ...
 $ soci1      : num  0.701 0.701 0.701 0.701 0.701 ...
 $ soci2      : num  0.18 0.18 0.18 0.18 0.18 ...
 $ soci3      : num  0.00816 0.00816 0.00816 0.00816 0.00816 ...
 $ soci4      : num  NA NA NA NA NA NA NA NA NA NA ...
 $ gdp        : num  860 860 860 860 860 ...

编辑这是CRE模型

Oneway (individual) effect Random Effect Model 
   (Swamy-Arora's transformation)

Call:
plm(formula = habi5 ~ habi1 + habi2 + lag(habi3) + lag(habi4) + 
    econ1 + gov1 + gov2 + gov3 + gov4 + soci1 + soci3 + Between(habi3) + 
    Between(habi4) + Between(econ1) + Between(gov1) + Between(gov2) + 
    Between(gov3) + Between(gov4) + Between(soci1) + Between(soci3), 
    data = merge3, model = "random", index = c("Name", 
        "Year"))

Balanced Panel: n = 122, T = 22, N = 2684

Effects:
                   var  std.dev share
idiosyncratic 0.002051 0.045290 0.301
individual    0.004771 0.069076 0.699
theta: 0.8616

Residuals:
      Min.    1st Qu.     Median    3rd Qu.       Max. 
-0.2176500 -0.0229694  0.0026702  0.0265122  0.1893782 

Coefficients:
                 Estimate Std. Error z-value              Pr(>|z|)    
(Intercept)     0.8323734  0.0777657 10.7036 < 0.00000000000000022 ***
habi1          -0.0429641  0.0453840 -0.9467             0.3438020    
habi2          -0.0337758  0.0486177 -0.6947             0.4872301    
lag(habi3)      0.0275567  0.0239274  1.1517             0.2494512    
lag(habi4)      0.1511430  0.0199840  7.5632  0.000000000000039329 ***
econ1          -0.1311447  0.0246641 -5.3172  0.000000105360004603 ***
gov1            0.0698110  0.0157319  4.4375  0.000009099519320286 ***
gov2           -0.0155454  0.0262203 -0.5929             0.5532635    
gov3           -0.0088883  0.0278096 -0.3196             0.7492604    
gov4           -0.1844372  0.0346533 -5.3224  0.000000102428273062 ***
soci1           0.0288428  0.0203037  1.4206             0.1554425    
soci3          -0.1109754  0.0136005 -8.1596  0.000000000000000336 ***
Between(habi3)  0.1410424  0.0413296  3.4126             0.0006434 ***
Between(habi4) -0.0495365  0.0699775 -0.7079             0.4790123    
Between(econ1)  0.0844426  0.0907776  0.9302             0.3522604    
Between(gov1)  -0.0272422  0.0813623 -0.3348             0.7377567    
Between(gov2)  -0.3507092  0.1293861 -2.7106             0.0067169 ** 
Between(gov3)  -0.0993777  0.1407993 -0.7058             0.4803057    
Between(gov4)  -0.0103704  0.2048604 -0.0506             0.9596268    
Between(soci1) -0.0131975  0.0619293 -0.2131             0.8312445    
Between(soci3) -0.0023736  0.0668733 -0.0355             0.9716855    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Total Sum of Squares:    7.5711
Residual Sum of Squares: 5.4702
R-Squared:      0.27749
Adj. R-Squared: 0.27206
Chisq: 1022.74 on 20 DF, p-value: < 0.000000000000000222

0 个答案:

没有答案