如何在tf.keras中计算w.r.t权重的梯度并将其记录下来以在张量板上监视梯度?

时间:2019-11-16 18:16:24

标签: tensorflow keras tensorboard tf.keras generative-adversarial-network

我实际上是在使用TF keras开发基本GAN,在这里我使用 train_on_batch 方法来训练生成器和鉴别器,或者没有 callbacks 参数用于将张量板日志写为例如keras模型的 fit 方法。现在,我想在训练期间编写模型日志,以监控张量板上的权重和渐变。

培训代码部分如下,

def train(g_model, d_model, gan_model, dataset, latent_dim, seed, n_epochs=100, n_batch=128):
  bat_per_epo = int(dataset.shape[0] / n_batch)
  half_batch = int(n_batch / 2)

  for i in range(n_epochs):
    for j in range(bat_per_epo):
      # Training discriminator with real images
      X_real, y_real = generate_real_samples(dataset, half_batch)
      d_loss1, _ = d_model.train_on_batch(X_real, y_real * .9) # Label Smoothing

      # Training discriminator with fake images
      X_fake, y_fake = generate_fake_samples(g_model, latent_dim, half_batch)
      d_loss2, _ = d_model.train_on_batch(X_fake, y_fake + .1) # Label Smoothing

      # Training generator with latent points
      X_gan = generate_latent_points(latent_dim, n_batch)
      y_gan = ones((n_batch, 1))

      g_loss = gan_model.train_on_batch(X_gan, y_gan)

      if not j%10:
        print('>%d, %d/%d, d1=%.3f, d2=%.3f g=%.3f' %(i+1, j+1, bat_per_epo, d_loss1, d_loss2, g_loss))

    display.clear_output(True)
    print('>%d, %d/%d, d1=%.3f, d2=%.3f g=%.3f' %(i+1, j+1, bat_per_epo, d_loss1, d_loss2, g_loss))
    summarize_performance(i, g_model, d_model, dataset, latent_dim, seed)

  display.clear_output(True)
  print('>%d, %d/%d, d1=%.3f, d2=%.3f g=%.3f' %(i+1, j+1, bat_per_epo, d_loss1, d_loss2, g_loss))
  summarize_performance(i, g_model, d_model, dataset, latent_dim, seed)

我发现了一些计算梯度的方法,

  1. How to obtain the gradients in keras?
  2. Getting gradient of model output w.r.t weights using Keras

但是我对此以及如何记录不带回调选项的渐变感到困惑。有人可以帮我吗?

0 个答案:

没有答案