如何在Tensorflow CNN模型中修剪权重(不将模型迁移到Keras)

时间:2019-08-29 10:03:17

标签: tensorflow keras neural-network tensorboard tf.keras

我有一个TF CNN模型,现在我想与此一起使用张量流的权重修剪API,但是我在网上检查的所有示例均仅适用于Keras模型

我想修剪现有模型的重量

def mnist_cnn(inputs):
    input_layer = tf.reshape(inputs, [-1, 28, 28, 3])

    # Convolutional Layer #1
    conv1 = tf.layers.conv2d(
          inputs=input_layer,
          filters=32,
          kernel_size=[5, 5],
          padding="same",
          activation=tf.nn.relu)

    # Pooling Layer #1
    pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)

    # Convolutional Layer #2 and Pooling Layer #2
    conv2 = tf.layers.conv2d(
          inputs=pool1,
          filters=64,
          kernel_size=[5, 5],
          padding="same",
          activation=tf.nn.relu)
    pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)

    # Dense Layer
    pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64])
    dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)
    dropout = tf.layers.dropout(inputs=dense, rate=0.4)

    # Logits Layer
    outputs = tf.layers.dense(inputs=dropout, units=10)

    return outputs

本教程定义了重量修剪 https://www.tensorflow.org/model_optimization/guide/pruning/pruning_with_keras

但是我不知道如何在现有模型中使用修剪API(而不将其升级为keras顺序模型)

0 个答案:

没有答案