我想创建一个张量,它是某种变换矩阵(例如旋转矩阵)
我的模型预测2个参数:x1和x2
所以当B是批数时,输出是(B,2)的张量。
但是,当我写下损失时,我必须知道这个“ B”,因为我要遍历它:
def get_rotation_tensor(x):
roll_mat = K.stack([ [[1, 0, 0],
[0, K.cos(x[i, 0]), -K.sin(x[i, 0])],
[0, K.sin(x[i, 0]), K.cos(x[i, 0])]] for i in range(BATCH_SIZE)])
pitch_mat = K.stack([ [[K.cos(x[i, 1]), 0, K.sin(x[i, 1])],
[0, 1, 0],
[-K.sin(x[i, 1]), 0, K.cos(x[i, 1])]] for i in range(BATCH_SIZE)])
return K.batch_dot(pitch_mat, roll_mat)
我唯一想到的解决方案是预先预定义BATCH_SIZE ..但是有没有办法编写一个适用于每批大小的通用损失函数?
谢谢
答案 0 :(得分:0)
我找到了解决方法
def get_rotation_tensor(x):
ones = K.ones_like(x[:, 0])
zeros = K.zeros_like(x[:, 0])
roll_mat = K.stack([[ones, zeros, zeros],
[zeros, K.cos(x[:, 0]), -K.sin(x[:, 0])],
[zeros, K.sin(x[:, 0]), K.cos(x[:, 0])]])
pitch_mat = K.stack([[K.cos(x[:, 1]), zeros, K.sin(x[:, 1])],
[zeros, ones, zeros],
[-K.sin(x[:, 1]), zeros, K.cos(x[:, 1])]])
return K.batch_dot(K.permute_dimensions(pitch_mat, (2, 0, 1)),
K.permute_dimensions(roll_mat, (2, 0, 1)))
答案 1 :(得分:-1)
也许我不能完全理解您的问题,但是您不能仅通过传递给损失函数的张量的形状来确定批量大小。下面是显示此想法的示例。我希望这会有所帮助。
# Install TensorFlow
try:
# %tensorflow_version only exists in Colab.
%tensorflow_version 2.x
except Exception:
pass
import tensorflow as tf
print(tf.__version__)
print(tf.executing_eagerly())
# Setup repro section from Keras FAQ with TF1 to TF2 adjustments
import numpy as np
import random as rn
# The below is necessary for starting Numpy generated random numbers
# in a well-defined initial state.
np.random.seed(42)
# The below is necessary for starting core Python generated random numbers
# in a well-defined state.
rn.seed(12345)
# Force TensorFlow to use single thread.
# Multiple threads are a potential source of non-reproducible results.
# For further details, see: https://stackoverflow.com/questions/42022950/
session_conf = tf.compat.v1.ConfigProto(intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1)
# The below tf.set_random_seed() will make random number generation
# in the TensorFlow backend have a well-defined initial state.
# For further details, see:
# https://www.tensorflow.org/api_docs/python/tf/set_random_seed
tf.compat.v1.set_random_seed(1234)
sess = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph(), config=session_conf)
tf.compat.v1.keras.backend.set_session(sess)
# Rest of code follows ...
# Custom Loss
def my_custom_loss(y_true, y_pred):
tf.print('inside my_custom_loss:')
tf.print('y_true:')
tf.print(y_true)
tf.print('y_true column 0:')
tf.print(y_true[:,0])
tf.print('y_true column 1:')
tf.print(y_true[:,1])
tf.print('y_pred:')
tf.print(y_pred)
# get length/batch size
batch_size=tf.shape(y_pred)[0]
tf.print('batch_size:')
tf.print(batch_size)
y_zeros = tf.zeros_like(y_pred)
y_mask = tf.math.greater(y_pred, y_zeros)
res = tf.boolean_mask(y_pred, y_mask)
logres = tf.math.log(res)
finres = tf.math.reduce_sum(logres)
return finres
# Define model
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(1, activation='linear', input_dim=1, name="Dense1"))
model.compile(optimizer='rmsprop', loss=my_custom_loss)
print('model.summary():')
print(model.summary())
# Generate dummy data
data = np.array([[2.0],[1.0],[1.0],[3.0],[4.0]])
labels = np.array([[[2.0],[1.0]],
[[0.0],[3.0]],
[[0.0],[3.0]],
[[0.0],[3.0]],
[[0.0],[3.0]]])
# Train the model.
print('training the model:')
print('-----')
model.fit(data, labels, epochs=1, batch_size=3)
print('done training the model.')
print(data.shape)
print(labels.shape)