如何获得具有分类变量的statsmodel中的logistic期望模型的置信区间?

时间:2019-11-13 06:48:36

标签: python logistic-regression statsmodels categorical-data confidence-interval

我使用python处理mnlogit回归模型,json数据的形式如下:

{Y:[0,1,2,2,``````];
 X:[[3,0,1],[2,1,1],[5,0,0]]}

Y是3个类别,X的每一行都有3列,X1是类别变量,X2和X3是二进制。 我使用mnlogit回归在statsmodels中对其进行了训练:

import pandas as pd
import statsmodels.api as sm
import numpy as np
from statsmodels.formula.api import mnlogit

data = json.load(open(DATA))
X = np.asarray(data['X'])
Y = pd.DataFrame(data=np.asarray(data['Y']),columns=["Y"])
X = pd.DataFrame(data=X,columns=["X1","X2","X3"])

results=mnlogit('Y~C(X1)+X2+X3',data=pd.concat([X, Y], axis=1)).fit()
pr=results.predict(X)

该模型将给出X的预测概率数,但不包括每个预测数的置信区间。像这样:

[[0.2,0.5,0.3],[0.1,0.1,0.8]`````]

我知道ols有一个名为summary_table的函数,它将为您提供置信区间和标准误差。由于我使用分类变量,因此很难手动进行计算。

我想知道是否有类似的逻辑回归模型方法?

0 个答案:

没有答案