我有一个数据框df1:
Date_1 Date_2 i_count c_book
01/09/2019 02/08/2019 2 204
01/09/2019 03/08/2019 2 211
01/09/2019 04/08/2019 2 218
01/09/2019 05/08/2019 2 226
01/09/2019 06/08/2019 2 234
01/09/2019 07/08/2019 2 242
01/09/2019 08/08/2019 2 251
01/09/2019 09/08/2019 2 259
01/09/2019 10/08/2019 3 269
01/09/2019 11/08/2019 3 278
01/09/2019 12/08/2019 3 288
01/09/2019 13/08/2019 3 298
01/09/2019 14/08/2019 3 308
01/09/2019 15/08/2019 3 319
01/09/2019 16/08/2019 4 330
01/09/2019 17/08/2019 4 342
01/09/2019 18/08/2019 4 354
01/09/2019 19/08/2019 4 366
01/09/2019 20/08/2019 4 379
01/09/2019 21/08/2019 5 392
01/09/2019 22/08/2019 5 406
01/09/2019 23/08/2019 6 420
01/09/2019 24/08/2019 6 435
01/09/2019 25/08/2019 7 450
01/09/2019 26/08/2019 8 466
01/09/2019 27/08/2019 9 483
01/09/2019 28/08/2019 10 500
01/09/2019 29/08/2019 11 517
01/09/2019 30/08/2019 12 535
01/09/2019 31/08/2019 14 554
我想基于i_count
扩展数据集。 i_count
是要复制的行数。因此可以说i_count = 2
是否暗示需要为同一行复制2行。
此外,我想创建一个新列c_book_i
,这样c_book
应该在数据集中的条目内划分。例如,如果i_count = 2
表示新数据帧应具有2个条目,而c_book_i
应具有2个条目,使得sum(c_book_i) = c_book
。最后一个约束是我想在所有情况下都拥有c_book_i > 10
。
到目前为止:
def f(x):
i = np.random.random(len(x))
j = i/sum(i) * x
return j
joined_df2 = df1.reindex(df1.index.repeat(df1['i_count']))
joined_df2['c_book_i'] = joined_df2.groupby(['Date_1','Date_2'])['c_book'].transform(f)
这为我提供了相同的东西,但是没有检查c_book应该大于10。很多值小于10。
任何人都可以提供帮助。
谢谢
答案 0 :(得分:1)
基于solution
def f(x):
total = x.iloc[0].astype(int)
minimum = 10
dividers = sorted(random.sample(range(minimum, total-minimum, minimum), len(x) - 1))
return [a - b for a, b in zip(dividers + [total], [0] + dividers)]
工作原理。设总数为12,我们希望将其最小分为2,分成4个部分。我们使用步骤2 => [2,4,6,8,10]
得到2到12-2的范围。然后获得任意3个数字2,4,8
并添加边框,因此[0,2,4,8,12]
。现在,该列表[2,2,4,4]
之间的差异将为12(边界之间的差异),且两者之和不得小于2
答案 1 :(得分:0)
那又怎么样:
def distribute_randomly(array):
# This is the minimum to give each:
minimum = 10
# This means we have to reserve this amount:
min_value_sum = len(array)*minimum
# The rest we can distribute:
to_distribute = array.sum() - min_value_sum
# Get random values that all sum up to 1:
random_values = numpy.random.rand(len(array))
random_values = random_values/random_values.sum()
# Return the minimum + a part of what is left to distribute
return random_values*to_distribute + minimum
# Expand rows based on length of i_count:
df1 = df1.join(df1['i_count'].apply(lambda x: range(x)).explode().rename('dummy'))
# transform cbook_ to randomize
df1['c_book_2'] = df1.groupby('i_count')['c_book'].transform(distribute_randomly)
# Finally make sure they are not below 10:
df1['c_book_i'] = df1['c_book_2'].where(df1['c_book_2']>10, 10)
# If needed:
df1 = df1.reset_index()
编辑:添加了“随机”分发功能。