从头开始构建TF-IDF矢量化器

时间:2019-11-05 07:46:12

标签: python machine-learning nlp tf-idf tfidfvectorizer

我正在尝试从头开始构建tf-idf矢量化器。我计算了tf和idf,但是在计算tf-idf时遇到了麻烦。这是代码:

from tqdm import tqdm
from scipy.sparse import csr_matrix
import math
import operator
from sklearn.preprocessing import normalize
import numpy

corpus = [
     'this is the first document',
     'this document is the second document',
     'and this is the third one',
     'is this the first document',
]

#splitting words of each document in the corpus
document = []
for doc in corpus:
    document.append(doc.split())

#calculating the word frequency of each ord inside a document
word_freq = {}   #calculate frequency of each word
for i in range(len(document)):
    tokens = document[i]
    for w in tokens:
        try:
            word_freq[w].add(i)  #add the word as key 
        except:
            word_freq[w] = {i}  #if it exists already, do not add.

for val in word_freq:
    word_freq[val] = len(word_freq[val])  #Counting the number of times a word(key)is in the whole corpus thus giving us the frequency of that word.

# Calculating term frequency
def tf(document):
    tf_dict = {}
    for word in document:
        if word in tf_dict:
            tf_dict[word] += 1
        else:
            tf_dict[word] = 1

    for word in  tf_dict:
        tf_dict[word] = tf_dict[word]/len(document)

tfDict = [tf(i) for i in document]

# Calculate inverse document frequency
def IDF():
    idfDict = {}
    for word in word_freq:
        idfDict[word] = 1 + math.log((1 + len(sentence)) / (1 + word_freq[word]))

    return idfDict

idfDict = IDF()

# Calculating TF-IDF
def TF_IDF():
    tfIdfDict = {}
    for i in tfDict:
        for j in i:
            tfIdfDict[j] = tfDict[i][j] * idfDict[j]

    return tfIdfDict

TF_IDF() 

问题出在TF_IDF函数中的这一行- tfIdfDict[j] = tfDict[i][j] * idfDict[j]

发生的错误是这个-

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-38-7b7d174d2ce3> in <module>()
      8     return tfIdfDict
      9 
---> 10 TF_IDF()

<ipython-input-38-7b7d174d2ce3> in TF_IDF()
      4     for i in tfDict:
      5         for j in i:
----> 6             tfIdfDict[j] = tfDict[i][j] * idfDict[j]
      7 
      8     return tfIdfDict

TypeError: list indices must be integers or slices, not dict

我了解问题的出处和原因,但找不到解决方案。请帮忙。谢谢!

1 个答案:

答案 0 :(得分:0)

tfDict是词典列表。当您执行for i in tfDict时,i实际上将具有tfDict的元素(一个字典)之一,而不是整数索引。

在您进行tfDict[i][j]之前这是完全可以的,因为tfDict[i]期望i是一个整数索引而不是元素值。

解决方案:执行i[j]而不是tfDict[i][j]