我有一个用于大量文本的多标签分类项目。 我在文本(train_v ['doc_text'])上使用了tf-Idf矢量化器,如下所示:
tfidf_transformer = TfidfTransformer()
X_counts = count_vect.fit_transform(train_v['doc_text'])
X_tfidf = tfidf_transformer.fit_transform(X_counts)
x_train_tfidf, x_test_tfidf, y_train_tfidf, y_test_tfidf = train_test_split(X_tfidf_r, label_vs, test_size=0.33, random_state=9000)
sgd = SGDClassifier(loss='hinge', penalty='l2', random_state=42, max_iter=25, tol=None, fit_intercept=True, alpha = 0.000009 )
现在,我需要对一组功能(test_v ['doc_text'])使用相同的矢量化器来预测标签。 但是,当我使用以下
时X_counts_test = count_vect.fit_transform(test_v['doc_text'])
X_tfidf_test = tfidf_transformer.fit_transform(X_counts_test)
predictions_test = clf.predict(X_tfidf_test)
我收到一条错误消息
ValueError: X has 388894 features per sample; expecting 330204
关于如何处理此问题的任何想法?
谢谢。
答案 0 :(得分:0)
问题是您在这里使用fit_transform
,使TfidfTransform()
适合test data
,然后对其进行转换。
在其上使用transform
方法。
此外,您应该使用TfidfVectorizer
我认为代码应为:
from sklearn.feature_extraction.text import TfidfVectorizer
tfidf_transformer = TfidfVectorizer()
# X_counts = count_vect.fit_transform(train_v['doc_text'])
X_tfidf = tfidf_transformer.fit_transform(train_v['doc_text'])
x_train_tfidf, x_test_tfidf, y_train_tfidf, y_test_tfidf = train_test_split(X_tfidf, label_vs, test_size=0.33, random_state=9000)
sgd = SGDClassifier(loss='hinge', penalty='l2', random_state=42, max_iter=25, tol=None, fit_intercept=True, alpha = 0.000009 )
# X_counts_test = count_vect.fit_transform(test_v['doc_text'])
X_tfidf_test = tfidf_transformer.transform(test_v['doc_text'])
predictions_test = clf.predict(X_tfidf_test)
此外,为什么要使用count_vect
,但我认为这里没有可用性,而在train_test_split
中,您使用的是X_tfidf_r
,在任何地方都没有提及。